【服装识别系统】图像识别+Python+人工智能+深度学习+算法模型+TensorFlow

一、介绍

服装识别系统,本系统作为图像识别方面的一个典型应用,使用Python作为主要编程语言,并通过TensorFlow搭建ResNet50卷积神经算法网络模型,通过对18种不同的服装(‘黑色连衣裙’, ‘黑色衬衫’, ‘黑色鞋子’, ‘黑色短裤’, ‘蓝色连衣裙’, ‘蓝色衬衫’, ‘蓝色鞋子’, ‘蓝色短裤’, ‘棕色鞋子’, ‘棕色短裤’, ‘绿色衬衫’, ‘绿色鞋子’, ‘绿色短裤’, ‘红色连衣裙’, ‘红色鞋子’, ‘白色连衣裙’, ‘白色鞋子’, ‘白色短裤’)数据集进行训练,最后得到一个识别精度较高的H5格式模型文件,然后基于Django搭建Web网页端可视化操作界面,实现用户在界面中上传一张服装图片识别其名称。

二、系统效果图片展示

img_07_03_16_56_01

img_07_03_16_56_12

img_07_03_16_56_30

img_07_03_16_56_47

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/kag21tq2el90gcge

四、TensorFlow介绍

TensorFlow是由谷歌开发的一个开源深度学习框架,具有以下几个主要特点:

  1. 灵活性与可扩展性:TensorFlow提供了灵活的计算图(Computational Graph),允许用户通过低级API自定义模型,同时也提供了高级API如Keras来简化模型的构建与训练。此外,它支持分布式计算,可以在多个CPU和GPU上高效运行。
  2. 广泛的应用领域:TensorFlow不仅在深度学习和机器学习领域表现出色,还被广泛应用于自然语言处理、语音识别、推荐系统和强化学习等领域。
  3. 强大的社区与支持:TensorFlow拥有庞大的用户社区,提供丰富的文档、教程和示例代码。同时,Google也不断更新和优化这个框架,确保其在最新技术上的兼容性与性能。

在图像识别方面,TensorFlow具有强大的能力。其内置的卷积神经网络(CNN)模块使得构建和训练图像分类、目标检测等模型变得相对简单。通过使用预训练的模型,如Inception、ResNet等,开发者可以在很短的时间内实现高精度的图像识别任务。
以下是一个使用TensorFlow进行图像分类的简单示例代码:


import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
import numpy as np

# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')

# 加载并预处理图像
img_path = 'path_to_your_image.jpg'  # 替换为你的图像路径
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# 进行预测
predictions = model.predict(x)

# 解码并输出预测结果
print('Predicted:', decode_predictions(predictions, top=3)[0])

在这个示例中,我们使用了预训练的ResNet50模型,该模型在ImageNet数据集上训练过,可以识别1000类不同的对象。首先,我们加载并预处理图像,将其调整为模型所需的输入格式。然后,我们使用模型对图像进行预测,并解码预测结果以获得人类可读的标签。
通过这样的方式,TensorFlow大大简化了图像识别任务的实现,使得开发者可以专注于模型的优化与应用场景的探索。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/767868.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从 ClickHouse 到 Apache Doris:快成物流的数智化货运应用实践

导读:随着快成物流的大宗商品产业链的不断发展,货运轨迹规划和实时数据分析的需求日益迫切,为了保障数据报表更新、用户画像圈选与物流轨迹实时更新等大数据核心系统性能,快成物流引入 Apache Doris 实时数仓升级了大数据算法平台…

乘积最大子数组

代码实现&#xff1a; 方法一&#xff1a;暴力法 方法二&#xff1a;动态规划 int maxProduct(int *nums, int numsSize) {long imax nums[0], imin nums[0], res nums[0];for (int i 1; i < numsSize; i) {if (nums[i] < 0) {int temp imax;imax imin;imin temp;…

Taogogo Taocms v3.0.2 远程代码执行漏洞(CVE-2022-25578)

前言 CVE-2022-25578 是一个存在于 Taogogo Taocms v3.0.2 中的代码注入漏洞。此漏洞允许攻击者通过任意编辑 .htaccess 文件来执行代码注入。 漏洞详情 漏洞描述&#xff1a;攻击者可以利用此漏洞上传一个 .htaccess 文件到网站&#xff0c;并在文件中注入恶意代码&#xf…

oracle11.2.0.4 RAC 保姆级静默安装(一) GI集群软件

一、响应文件准备 我们直接使用软件解压后的response文件夹中的响应文件模板进行修改 选择当前服务器的主机名,产品目录是在已存在的/u01/app目录基础上自动创建的无需提前创建oraInventory 按需选择语言,具体语言配置参考表格 一般rac默认选择安装类型为CRS_CONFIG 对应正…

设计模式-状态模式和策略模式

1.状态模式 1.1定义 当一个对象的内在状态改变时允许根据当前状态作出不同的行为&#xff1b; 1.2 适用场景 (1)一个对象的行为取决于它的状态,并且它必须在运行时根据状态来决定其行为. (2)代码中包含了大量的与状态有关的条件语句,例如:一个操作含有庞大的多分值语句(if…

工厂应用的工业一体机需要满足那些条件?

工业一体机作为工业自动化领域中的重要组成部分&#xff0c;已经广泛应用于制造业、加工业和其他工业领域。随着工业4.0时代的到来&#xff0c;工业一体机的使用变得愈加普遍和复杂。为了确保工业一体机在工厂应用中的稳定运行和高效运作&#xff0c;需要满足一些必要的条件。 …

JELR-630HS漏电继电器 30-500mA 导轨安装 约瑟JOSEF

JELR-HS系列 漏电继电器型号&#xff1a; JELR-15HS漏电继电器&#xff1b;JELR-25HS漏电继电器&#xff1b; JELR-32HS漏电继电器&#xff1b;JELR-63HS漏电继电器&#xff1b; JELR-100HS漏电继电器&#xff1b;JELR-120HS漏电继电器&#xff1b; JELR-160HS漏电继电器&a…

Nuxt3 的生命周期和钩子函数(九)

title: Nuxt3 的生命周期和钩子函数&#xff08;九&#xff09; date: 2024/7/3 updated: 2024/7/3 author: cmdragon excerpt: 摘要&#xff1a;本文介绍了Nuxt3中与Vite相关的五个生命周期钩子&#xff0c;包括vite:extend、vite:extendConfig、vite:configResolved、vite…

技术成神之路:设计模式(三)原型模式

1. 定义 原型模式&#xff08;Prototype Pattern&#xff09;是一种创建型设计模式&#xff0c;旨在通过复制现有对象来创建新对象&#xff0c;而不是通过实例化类的方式。这个模式可以提高对象创建的效率&#xff0c;尤其是在创建对象的过程非常复杂或代价高昂时。 2. 结构 原…

创建线程的五种方式

一.继承Thread ,重写run class MyThread extends Thread{Overridepublic void run() {//这里的内容就是该线程要完成的工作while(true) {System.out.println("hello thread");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeExceptio…

亚马逊跟卖卖家还在选品发愁吗!已经有卖家用这种方式选品大卖!

对于亚马逊相信很多卖家都不陌生&#xff0c;也有很多新手卖家涌入&#xff0c;但是进入后就不知道怎么选品了&#xff0c;很多新手卖家是不是天天盯着亚马逊页面的产品&#xff0c;眼花撩乱的&#xff0c;不知道那些产品&#xff0c;能跟卖那些不能跟卖&#xff0c;也有些卖家…

Nginx详解-安装配置等

目录 一、引言 1.1 代理问题 1.2 负载均衡问题 1.3 资源优化 1.4 Nginx处理 二、Nginx概述 三、Nginx的安装 3.1 安装Nginx 3.2 Nginx的配置文件 四、Nginx的反向代理【重点】 4.1 正向代理和反向代理介绍 4.2 基于Nginx实现反向代理 4.3 关于Nginx的location路径…

使用python做飞机大战

代码地址: 点击跳转

从.mat文件中导入数据到simulink进行FFT分析

1. 在matlab中准备数据 .mat 文件中包含时间向量和需要分析的数据 load(fcssiabc061302.mat);提取时间和需要分析的数据 time fcssiabc061302.X.Data; % 时间向量 signal fcssiabc061302.Y(1).Data; % A相电流数据 将数据转换为“structure with time”格式…

力扣67 二进制求和

文章目录 1. 题目链接2. 题目代码3.感受 1. 题目链接 二进制求和 2. 题目代码 class Solution { public:string addBinary(string a, string b) {vector<int> stringA;vector<int> stringB;int lengthOfA a.length();int lengthOfB b.length();for(int subscrip…

STELLA系统动态模拟技术及在农业、生态及环境等科学领域中的应用技术

STELLA是一种用户友好的计算机软件。通过绘画出一个系统的形象图形&#xff0c;并给这个系统提供数学公式和输入数据&#xff0c;从而建立模型。依据专业兴趣&#xff0c;STELLA可以用来建立各种各样的农业、生态、环境等方面的系统动态模型&#xff0c;为科研、教学、管理服务…

SpringBoot:集成机器学习模型进行预测和分析

引言 机器学习在现代应用程序中扮演着越来越重要的角色。通过集成机器学习模型&#xff0c;开发者可以实现智能预测和数据分析&#xff0c;从而提高应用程序的智能化水平。SpringBoot作为一个强大的框架&#xff0c;能够方便地集成机器学习模型&#xff0c;并提供灵活的部署和…

pycharm远程连接和conda环境参考博客自用整理

pycharm远程连接 pycharm的连接需要先用xftp把项目上传上去&#xff08;包括venv&#xff09;&#xff0c;似乎才能连 https://blog.csdn.net/weixin_41174300/article/details/134420981 注意要上传一份一模一样的&#xff0c;然后在deployment里面添加mapping 注意传输文件…

帮人安装打印机驱动踩过的坑

自从当了程序员&#xff0c;总被人认为是无所不能。安装系统&#xff0c;组装电脑都会。有啥只要跟电脑沾点边的事情都来找我。这不今天就被叫去帮人安装打印机驱动。 问题描述 以前老电脑都可以用打印机的&#xff0c;自从换新电脑后就不行了。别人可以用&#xff0c;就他的新…

AI替换:FaceFu V3.5.0软件下载,附教程

FaceFusion是一个基于WebUI的AI替换项目。 代码结构非常清晰&#xff0c;编码比较优秀&#xff0c;也正在变得更加实用。 前段时间也更新了不少内容。 今天统一通知一下&#xff0c;并且更新一下软件包。 具体的更新内容如下&#xff1a; V2.3.0更新内容&#xff1a; 引入…