基于YOLOv10深度学习的CT扫描图像肾结石智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【车辆检测追踪与流量计数系统】
49.【行人检测追踪与双向流量计数系统】50.【基于YOLOv8深度学习的反光衣检测与预警系统】
51.【危险区域人员闯入检测与报警系统】52.【高密度人脸智能检测与统计系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

基本功能演示

基于YOLOv10深度学习的CT扫描图像肾结石智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

摘要:CT扫描图像的肾结石智能检测系统在医疗诊断方面提供了一种快速、准确的辅助工具,显著提高了医生识别和评估肾结石的效率。本文基于YOLOv10深度学习框架,通过1300张CT扫描的肾结石相关图片,训练了一个进行肾结石目标检测的模型,可以对CT扫描图像中的肾结石进行实时检测。并基于此模型开发了一款带UI界面的肾结石智能检测系统,更便于进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • 检测结果说明
    • 主要功能说明
    • (1)图片检测说明
    • (2)视频检测说明
    • (3)摄像头检测说明
    • (4)保存图片与视频检测说明
  • 二、模型的训练、评估与推理
    • 1.YOLOv10简介
      • YOLOv10创新点
        • 双标签分配
        • 模型设计改进
    • 2. 数据集准备与训练
      • 模型训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

CT扫描图像的肾结石智能检测系统在医疗诊断方面提供了一种快速、准确的辅助工具,显著提高了医生识别和评估肾结石的效率。这项技术利用深度学习算法分析CT图像,可以在短时间内自动识别出肾结石,减少依赖医生主观判断的需求。这对于忙碌的医疗环境中,加快诊断过程、提供实时反馈,并辅助在肾结石治疗决策中起到至关重要的作用。

其主要应用场景包括:
临床诊断:在日常临床检查中应用,辅助医生快速确定肾结石的存在与位置。
紧急医疗:在急诊情况下快速筛查,协助判定是否为肾结石引起的腹痛。
远程医疗服务:在资源匮乏的区域,提供远程诊断服务,通过网络将CT图像传送至有系统支持的地方进行分析。
健康体检:在常规体检中作为标准流程之一,自动检测肾结石状况,提早预防和治疗。
医学研究:作为研究工具,分析肾结石发病的模式、频率和分布。
医疗数据分析:收集并分析大量医疗图像数据,用于改进肾结石的治疗方案和预防措施。

总结来说,CT扫描图像的肾结石智能检测系统利用先进的深度学习技术,为医生提供了一个强大的辅助工具,实现了对肾结石高效率和高准确率的检测。这不仅使临床诊断更加迅速和精确,还通过扩展至远程医疗等领域,极大地提高了医疗服务的可及性和质量。随着人工智能技术在医疗领域的持续进步,该系统的应用范围和诊断能力有望进一步扩展,为更多患者提供高质量的医疗服务。

博主通过搜集实际场景中的CT扫描的肾结石相关数据图片,根据YOLOv10的目标检测技术,基于python与Pyqt5开发了一款界面简洁的肾结石智能检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于实际场景中的CT扫描图像中的肾结石检测;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

界面参数设置说明

在这里插入图片描述

置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

检测结果说明

在这里插入图片描述

显示标签名称与置信度:表示是否在检测图片上标签名称与置信度,显示默认不勾选,如果勾选则会在检测图片上显示标签名称与置信度;
显示标签名称与置信度结果如下:
在这里插入图片描述

不显示标签名称与置信度结果如下:
在这里插入图片描述

总目标数:表示画面中检测出的目标数目;
目标选择:可选择单个目标进行位置信息、置信度查看。
目标位置:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;

主要功能说明

功能视频演示见文章开头,以下是简要的操作描述。

(1)图片检测说明

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。

(2)视频检测说明

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测说明

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。

(4)保存图片与视频检测说明

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。

保存的检测结果文件如下:
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv10简介

在这里插入图片描述
YOLOv10是YOLO最新一代版本的实时端到端目标检测算法。该算法在YOLO系列的基础上进行了优化和改进,旨在提高性能和效率之间的平衡。首先,作者提出了连续双分配方法,以实现NMS-free训练,从而降低了推理延迟并提高了模型的性能。其次,作者采用了全面的效率-准确性驱动的设计策略,对YOLO的各种组件进行了综合优化,大大减少了计算开销,并增强了模型的能力。实验结果表明,YOLOv10在各种模型规模下都取得了最先进的性能和效率表现。例如,YOLOv10-S比RT-DETR-R18快1.8倍,同时拥有更小的参数数量和FLOPs;与YOLOv9-C相比,YOLOv10-B的延迟减少了46%,参数减少了25%,但保持了相同的性能水平。

YOLOv10创新点

双标签分配

在这里插入图片描述

与一对一配对不同,一对多配对为每个真实标签分配一个预测标签,避免了后处理中的非极大抑制(NMS)。然而,它会导致弱监督,从而导致较低的准确度和收敛速度。幸运的是,这种缺陷可以通过一对多配对进行补偿。为了实现这一目标,我们在YOLO中引入了双标签分配来结合这两种策略的优点。具体来说,如上图所示,我们为 YOLO 添加了一个额外的一对一头部。它保留了一致的结构,并采用与原始的一对多分支相同的学习目标,但利用一对一匹配获得标签分配。在训练过程中,两个头与模型一起联合优化,允许骨干网络和脖子从一对多分支提供的丰富监督信号中受益。在推理过程中,我们丢弃一对多头,并使用一对一头进行预测。这使得 YOLO 能够端到端部署,而无需付出任何额外的推断成本。此外,在一对一匹配中,我们采用了顶部选择,实现了与匈牙利匹配相同的性能,同时减少了额外的训练时间。

模型设计改进

在这里插入图片描述

在模型设计方面,提出了以下几种改进点:
轻量级分类头: 通过对分类头进行轻量化设计,可以减少计算成本,而不会显著影响性能。
空间通道解耦降采样: 该方法通过分离空间和通道维度上的操作,提高了信息保留率,从而实现了更高的效率和竞争力。
排名引导块设计: 该方法根据各个阶段的冗余程度,采用不同的基本构建块,以实现更高效的模型设计。
大核深度卷积和部分自注意力模块: 这些模块可以在不增加太多计算开销的情况下提高模型的表现力。

2. 数据集准备与训练

通过网络上搜集关于CT扫描图像肾结石相关图片,并使用Labelimg标注工具对每张图片进行标注。数据集一共包含1300张图片,其中训练集包含1054张图片验证集包含123张图片测试集包含123张图片
部分图像及标注如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模型训练

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\train
val: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\valid
test: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\test

nc: 1
names: ['KidneyStone']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLOv10
import matplotlib
matplotlib.use('TkAgg')

#模型配置文件
model_yaml_path = "ultralytics/cfg/models/v10/yolov10n.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolov10n.pt'
if __name__ == '__main__':
    #加载预训练模型
    model = YOLOv10(model_yaml_path).load(pre_model_name)
    #训练模型
    results = model.train(data=data_yaml_path,
                          epochs=150,
                          batch=8,
                          name='train_v10')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5值为0.748,结果还是不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLOv10
import cv2

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/1-3-46-670589-33-1-63705540012391921600001-4673924283181105107_png_jpg.rf.feb0267fe02c47cc492e2d8366c61616.jpg"

# 加载预训练模型
model = YOLOv10(path, task='detect')

# 检测图片
results = model(img_path)
print(results)
res = results[0].plot(labels=False,conf=False)
# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款CT扫描图像肾结石智能检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv10深度学习的CT扫描图像肾结石智能检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/766329.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《企业实战分享 · 常用运维中间件》

📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 近期刚转战 CSDN,会严格把控文章质量,绝不滥竽充数,如需交流&#xff…

《昇思25天学习打卡营第6天|网络构建》

文章目录 前言:今日所学:1. 定义模型类2. 模型层3. 模型参数 前言: 在第六节中我们学习了网络构建,了解了神经网络模型是由神经网络层和Tensor操作构成,我们使用的mindspore.nn中提供了常见的升级网络层的实现&#x…

Spark on k8s 源码解析执行流程

Spark on k8s 源码解析执行流程 1.通过spark-submit脚本提交spark程序 在spark-submit脚本里面执行了SparkSubmit类的main方法 2.运行SparkSubmit类的main方法,解析spark参数,调用submit方法 3.在submit方法里调用doRunMain方法,最终调用r…

Python学习速成必备知识,(20道练习题)!

基础题练习 1、打印出1-100之间的所有偶数: for num in range(1, 101):if num % 2 0:print(num) 2、打印出用户输入的字符串的长度: string input("请输入一个字符串:")print("字符串的长度为:", len(str…

PHP验证日本手机电话号码

首先,您需要了解手机号码的规格。 根据 ,手机和PHS(个人手持电话系统)可以理解为以“070”、“080”和“090”开头的11位数字。 此外,以“050”开头的11位特定IP电话号码也将包含在该目标中。 关于以“060”开头的F…

Git 基础-创建版本库 git init、添加到暂存区git add、查看状态git status、查看改动git diff

1.创建版本库 git init 在目录中创建新的 Git 仓库。 你可以在任何时候、任何目录中这么做,完全是本地化的。 在目录中执行 git init,就可以创建一个 Git 仓库了。 注意: 没事不要手动修改 .git 目录里面的文件,不然改乱了,可能就…

初识Java(复习版)

一. 什么是Java Java是一种面向对象的编程语言,和C语言有所不同,C语言是一门面向过程的语言。偏底层实现,比较注重底层的逻辑实现。不能一味的说某一种语言特别好,每一种语言都是在特定的情况下有自己的优势。 二.Java语言发展史…

Redis哨兵和集群模式

特性哨兵模式集群模式高可用性是是数据分片否是水平扩展否是配置复杂度低高管理复杂度低高多键操作支持是否(有限制) 哨兵模式 原理: Redis 哨兵模式是一种高可用性解决方案,它通过监控 Redis 主从架构,自动执行故障…

JavaSEJava8 时间日期API + 使用心得

文章目录 1. LocalDate2. LocalTime3. LocalDateTime3.1创建 LocalDateTime3.2 LocalDateTime获取方法 4. LocalDateTime转换方法4.1 LocalDateTime增加或者减少时间的方法4.2 LocalDateTime修改方法 5. Period6. Duration7. 格式转换7.1 时间日期转换为字符串7.2 字符串转换为…

怎么导出等长,差分对的走线长度?

简介 今天需要导出等长组,差分对的走线长度?这个需要怎么做呢? 差分对和等长组 先来熟悉一下等长组和差分对的概念(表现在软件上) 差分对,是一对两个网等长组,多个网络 导出各自的数据 打开…

马斯克宣布xAI将在8月份推出Grok-2大模型 预计年底推出Grok-3

在今年内,由特斯拉创始人马斯克创立的人工智能初创公司xAI将推出两款重要产品Grok-2和Grok-3。马斯克在社交平台上透露了这一消息,其中Grok-2预计在今年8月份面世,而Grok-3则计划于年底前亮相。 除此之外,马斯克还表示&#xff0c…

LLM指令微调Prompt的最佳实践(二):Prompt迭代优化

文章目录 1. 前言2. Prompt定义3. 迭代优化——以产品说明书举例3.1 产品说明书3.2 初始Prompt3.3 优化1: 添加长度限制3.4 优化2: 细节纠错3.5 优化3: 添加表格 4. 总结5. 参考 1. 前言 前情提要: 《LLM指令微调Prompt的最佳实践(一)&#…

初试总分409分,专业课143,西电821专业

非常感谢自己考研409分上岸西安电子科技大学,杭州研究院,专业课143分,跟的研梦,讲课以及答疑还是非常专业的。 821专业课课本总共有四本,都在官网考纲的参考书里写了,不过主要参考其中两本,一本…

Go GMP:并发编程实践

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

速锐得解码汽车以太网技术特点接口定义数据传输及应用

在当前的汽车工业中,随着技术的飞速发展,车载网络技术也在不断进步与更新。其中,具备以太网的车型已成为一个新兴趋势,这主要归功于车载以太网技术在车内带宽需求较高的系统上的应用,如高级驾驶辅助系统(AD…

RabbitMQ 消息传递

消息何去何从 mandatory和immediate是channel.basicPublish方法中的两个参数,他们都有当消息传递过程中不可达目的地时将消息返回给生产者的功能。RabbitMQ提供的备份交换器可以将未能被交换器路由的消息(没有绑定队列或者没有匹配的绑定)存…

java基于ssm+jsp 二手交易平台网站

1商家能模块 商家首页,在商家首页页面可以查看个人中心、商品分类管理、商品信息管理、订单信息管理、订单配送管理信息,如图1所示。 图1商家首页界面图 个人中心,用户通过个人中心可以查看用户名、用户姓名、头像、性别、手机号码、邮箱等信…

【C语言】register 关键字

在C语言中,register关键字用于提示编译器将变量尽量存储在CPU的寄存器中,而不是在内存中。这是为了提高访问速度,因为寄存器的访问速度比内存快得多。使用register关键字的变量通常是频繁使用的局部变量。 基本用法 void example() {regist…

第三届行为科学与应用心理学国际会议(BSAP2024)

会议日期:2024年9月13-15日 会议地点:马来西亚 吉隆坡 会议官网:https://www.iaast.cn/meet/home/Bx116rPM 出版检索:SSCI&SCI 【支持单位】 苏库尔IBA大学 苏库尔IBA大学.png 【大会主席】 【出版与检索】

​​​​​​​​​​​​​​Spark Standalone集群环境

目录 Spark Standalone集群环境 修改配置文件 【workers】 【spark-env.sh】 【配置spark应用日志】 【log4j.properties】 分发到其他机器 启动spark Standalone 启动方式1:集群启动和停止 启动方式2:单独启动和停止 连接集群 【spark-shel…