竞赛 深度学习 python opencv 火焰检测识别

文章目录

  • 0 前言
  • 1 基于YOLO的火焰检测与识别
  • 2 课题背景
  • 3 卷积神经网络
    • 3.1 卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 数据集准备
    • 5.1 数据标注简介
    • 5.2 数据保存
  • 6 模型训练
    • 6.1 修改数据配置文件
    • 6.2 修改模型配置文件
    • 6.3 开始训练模型
  • 7 实现效果
    • 7.1图片效果
    • 7.2 视频效果
    • 7.3 摄像头实时效果
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的火焰识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 基于YOLO的火焰检测与识别

学长设计系统实现效果如下,精度不错!

在这里插入图片描述

在这里插入图片描述

2 课题背景

火灾事故的频发给社会造成不必要的财富损失以及人员伤亡,在当今这个社会消防也是收到越来越多的注视。火灾在发生初期是很容易控制的,因此,如何在对可能发生灾害的场所进行有效监控,使得潜在的损失危害降到最低是当前研究的重点内容。传统的探测器有较大的局限性,感温、感烟的探测器的探测灵敏度相对争分夺秒的灾情控制来说有着时间上的不足,而且户外场所的适用性大大降低。随着计算机视觉的发展,基于深度学习的图像处理技术已经愈发成熟并且广泛应用在当今社会的许多方面,其在人脸识别、安防、医疗、军事等领域已经有相当一段时间的实际应用,在其他领域也展现出跟广阔的前景。利用深度学习图像处理技术对火灾场景下火焰的特征学习、训练神经网络模型自动识别火焰,这项技术可以对具有监控摄像头场景下的火灾火焰进行自动、快速、准确识别并设置预警装置,从而在火灾发生的初期及时响应,赢得更多的时间,把损失降到最低。

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

3.1 卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

4 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):
          stride = None  # strides computed during build
          onnx_dynamic = False  # ONNX export parameter
            
          def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
              super().__init__()
              self.nc = nc  # number of classes
              self.no = nc + 5  # number of outputs per anchor
              self.nl = len(anchors)  # number of detection layers
              self.na = len(anchors[0]) // 2  # number of anchors
              self.grid = [torch.zeros(1)] * self.nl  # init grid
              self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
            self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
              self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
              self.inplace = inplace  # use in-place ops (e.g. slice assignment)
            
          def forward(self, x):
              z = []  # inference output
              for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                  bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                  x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            
    
                  if not self.training:  # inference
                      if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                          self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
            
                      y = x[i].sigmoid()
                      if self.inplace:
                          y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                          y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                      else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                        xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                          wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, y[..., 4:]), -1)
                      z.append(y.view(bs, -1, self.no))
            
              return x if self.training else (torch.cat(z, 1), x)
    
          def _make_grid(self, nx=20, ny=20, i=0):
              d = self.anchors[i].device
              if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                  yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
              else:
                  yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
              grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
              anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                  .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
              return grid, anchor_grid
    
    
    

5 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

5.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

5.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

6 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

6.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为fire.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,我这里是识别有无火焰,所以这里填写2;最后箭头4中填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

6.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

6.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

7 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI



    #部分代码
    from PyQt5 import QtCore, QtGui, QtWidgets


    class Ui_Win_mask(object):
        def setupUi(self, Win_mask):
            Win_mask.setObjectName("Win_mask")
            Win_mask.resize(1107, 868)
            Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
    "ui.pushButton->setStyleSheet(qstrStylesheet);")
            self.frame = QtWidgets.QFrame(Win_mask)
            self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))
            self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
            self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
            self.frame.setObjectName("frame")
            self.pushButton = QtWidgets.QPushButton(self.frame)
            self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton.setFont(font)
            self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton.setObjectName("pushButton")
            self.pushButton_2 = QtWidgets.QPushButton(self.frame)
            self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton_2.setFont(font)
            self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton_2.setObjectName("pushButton_2")
            self.pushButton_3 = QtWidgets.QPushButton(self.frame)
            self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))
            QtCore.QMetaObject.connectSlotsByName(Win_mask)



7.1图片效果

在这里插入图片描述

7.2 视频效果

在这里插入图片描述

7.3 摄像头实时效果

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/764920.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于小波分析的纹理和颜色反射对称性检测(MATLAB R2018A)

对称物体在自然图像和合成图像中普遍存在。作为对称物体最重要的全局特征之一,对称性检测长期以来都是计算机视觉领域的研究热点,并在图片的语义提取、图像语义理解以及情感识别等任务上具有广泛的应用。对称物体的检测技术,就是将图片中所蕴…

使用myCobot和OAK-D OpenCV DepthAI摄像头制作一个可以在眼前始终享受视频的手机支架!

引言 由于YouTube和Netflix的出现,我们开始躺着看手机。然而,长时间用手拿着手机会让人感到疲劳。这次我们制作了一个可以在你眼前保持适当距离并调整位置的自动移动手机支架,让你无需用手拿着手机。请务必试试! 准备工作 这次我们…

荣耀大横评,睿蓝7-450荣耀版卷出来的性价比之王

手握11万左右预算,如何在市场内选出一辆合适自己的车?荣耀版车型无疑是当下的最佳答案。在众多荣耀版车型中,比亚迪宋PLUS荣耀版EV520km领先型(后统称宋PLUS荣耀版)、比亚迪元PLUS荣耀版430km领先型(后统称元PLUS荣耀版)、比亚迪海豚PLUS荣耀版420km时尚版(后统称海豚荣耀版)、…

78.Vue 3 重用性模态框组件

模态框是大多数 Web 应用程序中的基本构建块。虽然最初实现起来可能看起来有点棘手,但实际上,使用 Vue 和一些 Flexbox 技巧,这不仅可行,而且非常简单。 让我们一起实现一个基础的模态框组件。 架构如下: AppModal.vue…

【Spring Boot】Spring AOP中的环绕通知

目录 一、什么是AOP?二、AOP 的环绕通知2.1 切点以及切点表达式2.2 连接点2.3 通知(Advice)2.4 切面(Aspect)2.5 不同通知类型的区别2.5.1 正常情况下2.5.2异常情况下 2.6 统一管理切点PointCut 一、什么是AOP? Aspect Oriented Programming&#xff…

【C语言内存函数】

目录 1.memcpy 使用 模拟实现 2.memmove 使用 模拟实现 3.memset 使用 4.memcmp 使用 1.memcpy 使用 void * memcpy ( void * destination, const void * source, size_t num );目的地址 源地址 字节数 destination:指向要复制内…

文件操作详解(C语言)

1.为什么要用到文件?怎样数据才能持久化? 保存在内存中的数不安全(一次断电,忘记保存,不用了还给系统) 持久化:保存在硬盘上(放在文件中) 什么是文件?文件…

pgrouting使用

pgRouting是一个为PostgreSQL和PostGIS提供路由功能的开源库,它支持复杂的图论算法,用于在地理网络中进行最短路径搜索。以下是pgRouting的一些应用实例。 注意事项: 1、路网表中的id、source、target必须是int类型,否则创建拓扑…

傅雷家书思维导图的制作方法,分享制作技巧和软件!

在浩如烟海的书海中,《傅雷家书》以其独特的视角和深厚的情感,成为了无数读者心中的经典。那么,如何将这部饱含父爱的书信集转化为清晰易懂的思维导图呢?本文将为您详细解读傅雷家书思维导图的制作技巧,并推荐几款实用…

java面试-SpringAOP

1.SpringAOP的使用 你了解Spring AOP 吗? 通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术。 2.SpringAOP的原理 我们可以将ASM生成的类进行缓存,这样能解决生成的类比较低效的问题。 ASM是可以操作字节码的框架。 真实实现类和…

Windows 组策略编辑器怎么打开,这两种方法你必须知道

组策略编辑器(Group Policy Editor, 简称 GPEdit.msc)是 Windows 操作系统中一个强大的工具,主要用于管理和配置系统设置、安全选项、用户权限等,尤其适用于企业环境中批量部署和管理策略。 尽管家庭版 Windows(如 Win…

数字集群手持终端是什么_鼎跃安全

在当今快速发展的科技时代,通信技术的进步为各行各业带来了巨大的变革。尤其是在公共安全、应急救援和交通运输等领域,通信的及时性和可靠性变得尤为重要。数字集群手持终端作为一种专用于数字集群通信系统的便携式设备,数字集群手持终端是一…

ubuntu安装miniconda、jupyer、ros2

miniconda: 类似于虚拟机 ,可以安装不同版本的python jupyer: python执行、调试命令工具 1.下载安装文件 wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.5.2-0-Linux-x86_64.sh 2.安装minconda bash https://repo.anaconda.com/miniconda/Miniconda3-py…

Linux 防火墙开放端口

启动防火墙服务:systemctl start firewalld 查看防火墙开放端口 :firewall-cmd --list-ports 开放3306端口:firewall-cmd --zonepublic --add-port2375/tcp --permanent 防火墙重启:firewall-cmd --reload

第十二届信息系统与计算技术国际会议(ISCTech 2024)

随着信息技术的迅猛发展,信息系统与计算技术已成为推动社会进步和经济发展的重要力量。为了加强国内外专家学者在信息系统与计算技术领域的交流与合作,第十二届信息系统与计算技术国际会议(ISCTech 2024)将于2024年11月8日至11日在…

BK145FRC10HSK、BK165FRC10HSK电液比例开环控制变量泵放大器

BK15FRC10HAK、BK35FRC10HAK、BK45FRC10HAK、BK55FRC10HAK、BK70FRC10HSK、BK80FRC10HSK、BK90FRC10HSK、BK100FRC10HSK、BK120FRC10HSK、BK145FRC10HSK、BK165FRC10HSK、BK180FRC10HSK电液比例开环控制柱塞泵主要是在传统的液压泵基础上,增加了电液比例控制先导阀。…

git基本使用(一):git的基本概念

Git 是一种分布式版本控制系统,最初由 Linus Torvalds 于 2005 年为 Linux 内核开发。它主要用于跟踪文件的更改,特别是在软件开发过程中,可以帮助团队成员协同工作。它在实际项目开发中,应用非常广泛,我们这一节来掌握…

【web3】分享一个web入门学习平台-HackQuest

前言 一直想进入web3行业,但是没有什么途径,偶然在电鸭平台看到HackQuest的共学营,发现真的不错,并且还接触到了黑客松这种形式。 链接地址:HackQuest 平台功能 学习路径:平台有完整的学习路径&#xff…

博途(TIA Portal)自动化工程软件下载安装,TIA Portal V18软件安装包获取

博途(TIA Portal)不仅仅是一款自动化工程软件,它更是西门子自动化领域的璀璨明珠。 它能够将西门子的所有自动化产品无缝集成在一起,无论是PLC、人机界面,还是伺服系统、马达、变频器、网络组件等,博途都能…

SMS群发信息API接口安全性有哪些保障方法?

SMS群发信息API接口支持哪些格式?如何使用API接口? SMS群发信息API接口被广泛应用于企业营销、客户服务、身份验证等多个领域。确保SMS群发信息API接口的安全性,已成为企业和开发者们必须重视的问题。AoKSend将探讨几种保障SMS群发信息API接…