我是小米,一个喜欢分享技术的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号“软件求生”,获取更多技术干货!
大家好,我是小米。今天,我们来聊聊一个在大数据处理领域常见但又令人头疼的问题——Kafka消费组内的重平衡(rebalance)。这可是阿里巴巴面试中的经典题目哦,大家可要认真看!
平衡的事情
Kafka 作为分布式消息系统的翘楚,凭借其高吞吐量和强大的扩展性,已经逐渐成为各大企业数据的首选。但是,随着规模的扩大,Kafka 的消费组重平衡问题也变得复杂。
背景架构改革应对挑战
在一个Kafka数据库中,消费者组(Consumer Group)由一组消费者(Consumer)组成,每个消费者负责处理特定分区(Partition)的消息。正常情况下,消费者组内的消费者会平衡每个分区的数据。然而,当数据库架构发生变动时,例如新增或移除节点,都会引发消费组内的重平衡。这种重平衡可能会消耗大量时间,从数分钟到数小时不等,在此期间Kafka几乎处于不可用状态,对Kafka的TPS(每秒事务数)影响极大。
想想看,一个虚拟货币市场的大型Kafka市场在进行重平衡时的场景,是不是有点头皮发麻? 这就是我们今天要深入探讨的问题。
重平衡的触发原因
要解决问题&