YOLOv8改进 | 主干网络 | C2f融合动态卷积模块ODConv


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


在卷积神经网络中,传统的训练方法是在每一层学习一个单一的静态卷积核。然而,最新的研究通过学习多个卷积核的线性组合并利用输入依赖的注意力进行加权,这种方法称为动态卷积,它可以提高轻量级CNN的准确性,同时保持高效的推理。尽管如此,目前的研究仅考虑了卷积核数量这一维度的动态性而忽略了卷积核的空间大小、输入和输出通道数等其他三个维度。为了解决这个问题,研究者提出了全维度动态卷积(ODConv),这是一种更为通用和优雅的动态卷积设计ODConv采用一种新颖的多维注意力机制和并行策略,能够在卷积层的卷积核空间的所有四个维度上学习互补的注意力。ODConv可以作为一个常规卷积的替代品,被集成到许多CNN架构中。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转

目录

1. 原理

2. 将C2f_ODConv添加到YOLOv8代码

2.1 C2f_ODConv代码实现

2.2 更改init.py文件

2.3 新增yaml文件

2.4 注册模块

2.5 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


1. 原理

论文地址:OMNI-DIMENSIONAL DYNAMIC CONVOLUTION——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

全维动态卷积 (ODConv) 是一种广义动态卷积设计,它通过结合多维注意力机制扩展了动态卷积的概念。以下是 ODConv 背后主要原理的详细解释:

ODConv 的关键原理:

动态卷积基础知识

传统卷积神经网络 (CNN) 使用静态卷积核,这意味着相同的核应用于所有输入样本。相比之下,动态卷积使用多个卷积核的组合,每个核都由依赖于输入特征的注意力机制加权。这使得卷积操作依赖于输入。

现有动态卷积的局限性

现有的动态卷积方法,如 CondConv 和 DyConv,仅在核空间的一个维度(核的数量)上应用动态属性。这忽略了卷积核的另外三个维度:空间大小、输入通道数和输出通道数。

  1. 多维注意力机制: ODConv 通过引入多维注意力机制解决了这一限制。它不仅针对卷积核数量学习和应用注意力权重,还针对每个卷积核的空间大小、输入通道和输出通道学习和应用注意力权重。这确保了基于输入特征对卷积核进行更全面、更细粒度的动态调整。

  2. 并行注意力策略: ODConv 并行计算四种类型的注意力(针对空间大小、输入通道、输出通道和卷积核数量)。然后将这些注意力结合起来调节卷积核,增强网络中卷积操作的特征提取能力。

  3. 效率和性能: 通过利用更详细和多样化的注意力机制,ODConv 可以用更少的参数实现更好的性能。它显示了各种 CNN 架构(轻量级和大型)的显著准确性改进,而无需大幅增加模型大小。

  4. 泛化和应用: ODConv 可以集成到许多现有的 CNN 架构中,作为常规卷积的直接替代品。它不仅可以改进分类任务,还可以很好地转移到其他任务,例如对象检测。

示意图比较:

  • 现有方法:

CondConv 和 DyConv 为每个内核计算单个注意力标量,从而对内核的所有过滤器进行统一调整。

  • ODConv:

为内核空间的不同维度计算多个注意力,从而可以对卷积内核进行更细致入微和有效的调制。

实施概述:

注意力机制:

  • 空间注意力:捕捉空间相关特征。

  • 通道注意力:调整每个输入通道的权重。

  • 过滤器注意:调节每个过滤器的输出特征。

  • 内核注意:根据输入特征在多个内核中进行选择。

结果:

  • ODConv 在 ImageNet 和 MS-COCO 等数据集上针对各种 CNN 主干显示出显着的准确性改进。

  • 与其他动态卷积方法和注意模块相比,它表现出卓越的性能,同时参数效率更高。

总之,ODConv 通过结合全面的多维注意机制增强了动态卷积方法,从而在各种 CNN 架构中实现了更好的性能和效率。

2. 将C2f_ODConv添加到YOLOv8代码

2.1 C2f_ODConv代码实现

关键步骤一:将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/conv.py中,并在该文件的__all__中添加“C2f_ODConv”

class Attention(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size=3, groups=1, reduction=0.0625, kernel_num=4, min_channel=16):
        super(Attention, self).__init__()
        attention_channel = max(int(in_planes * reduction), min_channel)
        self.kernel_size = kernel_size
        self.kernel_num = kernel_num
        self.temperature = 1.0

        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(in_planes, attention_channel, 1, bias=False)
        self.bn = nn.BatchNorm2d(attention_channel)
        self.relu = nn.ReLU(inplace=True)

        self.channel_fc = nn.Conv2d(attention_channel, in_planes, 1, bias=True)
        self.func_channel = self.get_channel_attention

        if in_planes == groups and in_planes == out_planes:  # depth-wise convolution
            self.func_filter = self.skip
        else:
            self.filter_fc = nn.Conv2d(attention_channel, out_planes, 1, bias=True)
            self.func_filter = self.get_filter_attention

        if kernel_size == 1:  # point-wise convolution
            self.func_spatial = self.skip
        else:
            self.spatial_fc = nn.Conv2d(attention_channel, kernel_size * kernel_size, 1, bias=True)
            self.func_spatial = self.get_spatial_attention

        if kernel_num == 1:
            self.func_kernel = self.skip
        else:
            self.kernel_fc = nn.Conv2d(attention_channel, kernel_num, 1, bias=True)
            self.func_kernel = self.get_kernel_attention

        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            if isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def update_temperature(self, temperature):
        self.temperature = temperature

    @staticmethod
    def skip(_):
        return 1.0

    def get_channel_attention(self, x):
        channel_attention = torch.sigmoid(self.channel_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)
        return channel_attention

    def get_filter_attention(self, x):
        filter_attention = torch.sigmoid(self.filter_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)
        return filter_attention

    def get_spatial_attention(self, x):
        spatial_attention = self.spatial_fc(x).view(x.size(0), 1, 1, 1, self.kernel_size, self.kernel_size)
        spatial_attention = torch.sigmoid(spatial_attention / self.temperature)
        return spatial_attention

    def get_kernel_attention(self, x):
        kernel_attention = self.kernel_fc(x).view(x.size(0), -1, 1, 1, 1, 1)
        kernel_attention = F.softmax(kernel_attention / self.temperature, dim=1)
        return kernel_attention

    def forward(self, x):
        x = self.avgpool(x)
        x = self.fc(x)
        # x = self.bn(x) # 在外面我提供了一个bn这里会报错
        x = self.relu(x)
        return self.func_channel(x), self.func_filter(x), self.func_spatial(x), self.func_kernel(x)


class ODConv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=1, dilation=1, groups=1,
                 reduction=0.0625, kernel_num=4):
        super(ODConv2d, self).__init__()
        in_planes = in_planes
        self.in_planes = in_planes
        self.out_planes = out_planes
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.kernel_num = kernel_num
        self.attention = Attention(in_planes, out_planes, kernel_size, groups=groups,
                                   reduction=reduction, kernel_num=kernel_num)
        self.weight = nn.Parameter(torch.randn(kernel_num, out_planes, in_planes // groups, kernel_size, kernel_size),
                                   requires_grad=True)
        self._initialize_weights()

        if self.kernel_size == 1 and self.kernel_num == 1:
            self._forward_impl = self._forward_impl_pw1x
        else:
            self._forward_impl = self._forward_impl_common

    def _initialize_weights(self):
        for i in range(self.kernel_num):
            nn.init.kaiming_normal_(self.weight[i], mode='fan_out', nonlinearity='relu')

    def update_temperature(self, temperature):
        self.attention.update_temperature(temperature)

    def _forward_impl_common(self, x):
        # Multiplying channel attention (or filter attention) to weights and feature maps are equivalent,
        # while we observe that when using the latter method the models will run faster with less gpu memory cost.
        channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)
        batch_size, in_planes, height, width = x.size()
        x = x * channel_attention
        x = x.reshape(1, -1, height, width)
        aggregate_weight = spatial_attention * kernel_attention * self.weight.unsqueeze(dim=0)
        aggregate_weight = torch.sum(aggregate_weight, dim=1).view(
            [-1, self.in_planes // self.groups, self.kernel_size, self.kernel_size])
        output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,
                          dilation=self.dilation, groups=self.groups * batch_size)
        output = output.view(batch_size, self.out_planes, output.size(-2), output.size(-1))
        output = output * filter_attention
        return output

    def _forward_impl_pw1x(self, x):
        channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)
        x = x * channel_attention
        output = F.conv2d(x, weight=self.weight.squeeze(dim=0), bias=None, stride=self.stride, padding=self.padding,
                          dilation=self.dilation, groups=self.groups)
        output = output * filter_attention
        return output

    def forward(self, x):
        return self._forward_impl(x)


class Bottleneck_ODConv(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = ODConv2d(c_, c2, k[1][0], 1, groups=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C2f_ODConv(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(
            Bottleneck_ODConv(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

ODConv(Omni-Dimensional Dynamic Convolution)在处理图像时的主要步骤可以总结为以下几个阶段,每个阶段都利用其独特的多维度注意力机制来增强图像处理效果:

1. 特征提取 (Feature Extraction)

  • 输入:原始图像或图像的特征图。

  • 操作:通过卷积层提取图像的初始特征。

  • ODConv 特性:使用多个静态卷积核获取初步的图像特征。

2. 多维度注意力机制 (Multi-Dimensional Attention Mechanism)

  • 输入:初步提取的特征图。

  • 操作

    • 计算多维度注意力权重

      • 空间注意力 (Spatial Attention):为卷积核的空间维度分配权重,捕捉空间相关特征。

      • 通道注意力 (Channel Attention):为卷积核的输入通道分配权重,捕捉通道间的依赖关系。

      • 滤波器注意力 (Filter Attention):为卷积核的输出通道分配权重,增强输出特征的表达能力。

      • 核选择注意力 (Kernel Attention):为多个卷积核分配权重,选择最适合当前输入特征的卷积核组合。

    • 组合注意力权重:将上述注意力权重结合起来,动态调整卷积核参数。

3. 动态卷积运算

  • 输入:经过注意力机制调整的卷积核和输入特征图。

  • 操作

    • 应用动态卷积:使用调整后的卷积核进行卷积运算,生成新的特征图。

    • 输出特征图:动态卷积后产生的特征图包含了更丰富和更准确的特征信息。

4. 特征融合 (Feature Fusion)

  • 输入:动态卷积后产生的特征图。

  • 操作:将不同层次的特征图进行融合,进一步增强图像特征。

  • ODConv 特性:通过多层次的动态卷积特征融合,提升图像表示的能力。

5. 高层任务 (High-Level Tasks)

  • 输入:经过特征融合的图像特征图。

  • 操作:将特征图输入到高层任务模块,如分类、检测、分割等任务中。

  • ODConv 特性:由于特征图经过了多维度注意力机制的增强和动态卷积的处理,ODConv在高层任务中表现出更高的精度和效果。

6. 后处理 (Post-Processing)

  • 输入:高层任务的输出结果。

  • 操作:对输出结果进行必要的后处理,如非极大值抑制、边缘修正等,以得到最终的图像处理结果。

  • ODConv 特性:由于ODConv在特征提取和特征融合阶段已经提升了图像特征的质量,后处理阶段能够更高效地处理图像结果。

总结

ODConv 处理图像的主要步骤包括特征提取、多维度注意力机制、动态卷积运算、特征融合、高层任务和后处理。通过在卷积运算中引入多维度的动态注意力机制,ODConv 能够更全面和准确地提取和表示图像特征,从而在各种图像处理任务中表现出色。

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 新增yaml文件

关键步骤三:在 \ultralytics\ultralytics\cfg\models\v8下新建文件 yolov8_ODConv.yaml并将下面代码复制进去

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_ODConv, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_ODConv, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

温馨提示:因为本文只是对yolov8基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLOv8n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channels: 1024 # max_channels
 
# YOLOv8s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channels: 1024 # max_channels
 
# YOLOv8l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
max_channels: 512 # max_channels
 
# YOLOv8m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
max_channels: 768 # max_channels
 
# YOLOv8x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple
max_channels: 512 # max_channels

2.4 注册模块

关键步骤四:在parse_model函数中进行注册,添加C2f_ODConv,

2.5 执行程序

在train.py中,将model的参数路径设置为yolov8_c2f_ODConv.yaml的路径

建议大家写绝对路径,确保一定能找到

from ultralytics import YOLO
 
# Load a model
# model = YOLO('yolov8n.yaml')  # build a new model from YAML
# model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
 
model = YOLO(r'/projects/ultralytics/ultralytics/cfg/models/v8/yolov8_c2f_ODConv.yaml')  # build from YAML and transfer weights
 
# Train the model
model.train(device = [3], batch=16)

🚀运行程序,如果出现下面的内容则说明添加成功🚀

3. 完整代码分享

https://pan.baidu.com/s/1bLvDgIs9leo6ZCCRZ-X93w?pwd=h4u4

提取码: h4u4 

4. GFLOPs

关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv8nGFLOPs

改进后的GFLOPs

5. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

6. 总结

ODConv(Omni-Dimensional Dynamic Convolution)的主要原理是通过引入多维度注意力机制来动态调整卷积核参数,从而在卷积神经网络中实现更灵活和精确的特征提取。它通过计算并应用空间注意力、通道注意力、滤波器注意力和核选择注意力,全面地调整卷积核在各个维度上的权重。这种多维度的动态调整机制使得ODConv能够根据输入图像的特征动态选择最合适的卷积核组合,从而在各类高层视觉任务(如图像分类、目标检测和图像分割)中实现显著的性能提升,同时保持较高的参数效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/763638.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Open3D 点云CPD算法配准(粗配准)

目录 一、概述 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 3.1原始点云 3.2配准后点云 一、概述 在Open3D中,CPD(Coherent Point Drift,一致性点漂移)算法是一种经典的点云配准方法,适用于无序点云的非…

Top 5 免费 PDF 转 Word 转换工具

PDF 是可移植文档格式的缩写,是一种文件格式,用于独立于软件、硬件或操作系统可靠地呈现和交换文档。PDF 不是为编辑而设计的,因此如果您想更改某些内容,可能需要将 PDF 转换为 Word/Doc 转换器。 Top 5 免费 PDF 转 Word 转换工具…

OFDM关键技术——ICI消除技术

ICI消除算法可以分为以下几类: 1、OFDM符号长度和载波间隔的最优选择,较短的符号周期更有利于降低ICI 2、OFDM基信号的最佳选择,选择频域衰减更快的OFDM基带脉冲 3、自干扰消除技术,将信息调制到一组子载波上 4、频域均衡器&a…

电影交流平台小程序的设计

管理员账户功能包括:系统首页,个人中心,电影类型管理,留言反馈管理,电影中心管理,系统管理 微信端账号功能包括:系统首页,电影中心,留言反馈 开发系统:Window…

Rust Eq 和 PartialEq

Eq 和 PartialEq 在 Rust 中&#xff0c;想要重载操作符&#xff0c;你就需要实现对应的特征。 例如 <、<、> 和 > 需要实现 PartialOrd 特征: use std::fmt::Display;struct Pair<T> {x: T,y: T, }impl<T> Pair<T> {fn new(x: T, y: T) ->…

iptable精讲

SNAT策略 SNAT策略的典型应用环境 局域网主机共享单个公网IP地址接入Internet SNAT策略的原理 源地址转换&#xff0c;Source Network Address Translantion 修改数据包的源地址 部署SNAT策略 1.准备二台最小化虚拟机修改主机名 主机名&#xff1a;gw 主机名&#xff1…

WPF布局控件

目录 Grid StackPanel WrapPanel DockPanel UniformGrid Canvas&InkCanvas Canvas InkCanvas Border Grid 属性 ShowGridLines&#xff1a;显示边线 ColumnDefinitions 列集合 表示有几列下面就写几个ColumnDefinition Width 宽&#xff1a;如果写具体数字则表…

【面试题】IPS(入侵防御系统)和IDS(入侵检测系统)的区别

IPS&#xff08;入侵防御系统&#xff09;和IDS&#xff08;入侵检测系统&#xff09;在网络安全领域扮演着不同的角色&#xff0c;它们之间的主要区别可以归纳如下&#xff1a; 功能差异&#xff1a; IPS&#xff1a;这是一种主动防护设备&#xff0c;不仅具备检测攻击的能力&…

UNet进行病理图像分割

数据集链接&#xff1a;https://pan.baidu.com/s/1IBe_P0AyHgZC39NqzOxZhA?pwdnztc 提取码&#xff1a;nztc UNet模型 import torch import torch.nn as nnclass conv_block(nn.Module):def __init__(self, ch_in, ch_out):super(conv_block, self).__init__()self.conv nn…

JVM原理(十):JVM虚拟机调优分析与实战

1. 大内存硬件上的程序部署策略 这是笔者很久之前处理过的一个案例&#xff0c;但今天仍然具有代表性。一个15万PV/日左右的在线文档类型网站最近更换了硬件系统&#xff0c;服务器的硬件为四路志强处理器、16GB物理内存&#xff0c;操作系统为64位CentOS5.4&#xff0c;Resin…

Android Studio 解决AAPT: error: file failed to compile

1.找到项目下的build.gradle 2.在android语块中添加下面代码 aaptOptions.cruncherEnabled false aaptOptions.useNewCruncher false 12

Linux中的库

什么是库&#xff1f; 库是一组预先编译好的方法/函数的集合&#xff0c;其他程序想要使用源文件中的函数时&#xff0c;只需在编译可执行程序时&#xff0c;链接上该源文件生成的库文件即可。 库分为两类&#xff1a;静态库和动态库 在Linux系统中&#xff0c;以.a为后缀的…

力扣热100 哈希

哈希 1. 两数之和49.字母异位词分组128.最长连续序列 1. 两数之和 题目&#xff1a;给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。你可以假设每种输入只会对应一个答案。…

【NOI-题解】1326. 需要安排几位师傅加工零件1228. 排队打水问题1229. 拦截导弹的系统数量求解

文章目录 一、前言二、问题问题&#xff1a;1326. 需要安排几位师傅加工零件问题&#xff1a;1228. 排队打水问题问题&#xff1a;1229. 拦截导弹的系统数量求解 三、感谢 一、前言 本章节主要对贪心问题进行讲解&#xff0c;包括《1326. 需要安排几位师傅加工零件》《1228. 排…

每天五分钟深度学习:解决for循环效率慢的关键在于向量化

本文重点 上一节课程中,我们学习了多样本的线性回归模型,但是我们的伪代码实现中使用了大量的for循环,这样代码的问题是效率很低。为了克服这一瓶颈,向量化技术应运而生,成为提升程序执行效率、加速数据处理速度的重要手段。 向量化技术概述 向量化(Vectorization)是…

目标检测算法讲解:从传统方法到深度学习,全面解析检测技术的演进与应用!

在计算机视觉领域&#xff0c;目标检测是一个基本且关键的任务&#xff0c;它不仅涉及图像中对象的识别&#xff0c;还包括确定这些对象的具体位置。这一任务通常通过算法来实现&#xff0c;这些算法能够识别出图像中的一个或多个目标&#xff0c;并给出每个目标的类别和位置。…

Kafka-服务端-网络层-源码流程

整体架构如下所示&#xff1a; responseQueue不在RequestChannel中&#xff0c;在Processor中&#xff0c;每个Processor内部有一个responseQueue 客户端发送的请求被Acceptor转发给Processor处理处理器将请求放到RequestChannel的requestQueue中KafkaRequestHandler取出reque…

Python:Python简介

一、Python简介 1.Python的诞生 诞生&#xff1a;1989年圣诞节期间&#xff0c;Guido van Rossum为了打发圣诞节假期的无聊&#xff0c;便开始了Python语言的编写。 命名&#xff1a;Python第一个发行版本是在1991年&#xff0c;起名为Python是源自于Guido喜欢的一档电视节目…

英伟达经济学:云服务商在GPU上每花1美元 就能赚7美元

NVIDIA超大规模和 HPC 业务副总裁兼总经理 Ian Buck 近日在美国银行证券 2024 年全球技术大会上表示&#xff0c;客户正在投资数十亿美元购买新的NVIDIA硬件&#xff0c;以跟上更新的 AI 大模型的需求&#xff0c;从而提高收入和生产力。 Buck表示&#xff0c;竞相建设大型数据…

在 PostgreSQL 中强制执行连接顺序#postgresql认证

让我们首先创建一些表&#xff1a; PgSQL plan# SELECT CREATE TABLE x || id || (id int) FROM generate_series(1, 5) AS id;?column? --------------------------CREATE TABLE x1 (id int)CREATE TABLE x2 (id int)CREATE TABLE x3 (id int)CREATE TABLE…