Open3D 点云CPD算法配准(粗配准)

目录

一、概述

二、代码实现

2.1关键函数

2.2完整代码

三、实现效果

3.1原始点云

3.2配准后点云


一、概述

        在Open3D中,CPD(Coherent Point Drift,一致性点漂移)算法是一种经典的点云配准方法,适用于无序点云的非刚性(非刚体)配准问题。CPD算法通过建模点云之间的概率关系,以最大化对应点对之间的一致性来实现配准。以下是CPD算法的详细原理介绍:

CPD算法通过以下步骤来实现点云的非刚性配准:
1.问题建模:
        假设有两个点云:源点云(source)和目标点云(target)。目标是找到一个概率转移矩阵和变换矩阵,将源点云的点映射到目标点云上,同时考虑点之间的一致性和概率分布。
2.概率分布建模:
        - 假设每个源点在目标点云上的对应位置服从高斯分布。
        - 建立概率转移矩阵P来表示每个源点对目标点的概率。
3.优化目标:
        CPD算法通过最大化点云之间的一致性来优化配准结果。具体来说,它最小化源点云与目标点云之间的KL散度(Kullback-Leibler divergence),以确定最佳的变换和对应关系。
4.迭代优化:
        CPD算法使用迭代方法来逐步优化变换矩阵和概率转移矩阵。每次迭代包括两个主要步骤:
        - E步骤(Expectation):更新每个源点的对应概率,基于当前的变换矩阵和目标点云的位置。
        - M步骤(Maximization):更新变换矩阵,将源点云映射到目标点云上,最大化对应点对之间的一致性。
5.收敛判据:
        CPD算法通常会设定迭代次数或者设定一个收敛准则来终止迭代过程,例如KL散度变化小于某个阈值或者达到最大迭代次数。

二、代码实现

2.1关键函数

def registration_cpd(source, target, tf_type_name='rigid',
                     w=0.0, maxiter=50, tol=0.001,
                     callbacks=[], **kargs):
  • tf_type_name (str, optional):转换类型(‘刚性’,‘仿射’,‘非刚性’)
  • w (float, optional):均匀分布的权重,0 < ’ w ’ < 1。
  • maxitr (int, optional):EM算法的最大迭代次数。
  • tol (float, optional): 停止迭代的最小容忍偏差

2.2完整代码

import open3d as o3d
import numpy as np
from probreg import cpd
import time
import copy


#  --------------------读取点云数据------------------
source = o3d.io.read_point_cloud("..//..//standford_cloud_data//Horse.pcd")
target = o3d.io.read_point_cloud("..//..//standford_cloud_data//Horse_trans.pcd")

source = source.uniform_down_sample(every_k_points=10)
target = target.uniform_down_sample(every_k_points=10)

# 点云上色
source.paint_uniform_color([0, 0, 1])
target.paint_uniform_color([0, 1, 0])
o3d.visualization.draw_geometries([source, target], window_name="点云初始位置",
                                  width=1024, height=768,
                                  left=50, top=50,
                                  mesh_show_back_face=False)  # 可视化点云初始位置
# CPD算法进行配准
start = time.time()
tf_param, _, _ = cpd.registration_cpd(source, target,        # 源点云和目标点云
                                      tf_type_name='rigid',  # 计算变换矩阵的类型('rigid', 'affine', 'nonrigid')
                                      w=0.0,                 # 均匀分布的权重,0 < ' w ' < 1。
                                      maxiter=50,            # EM算法的最大迭代次数。
                                      tol=0.001)             # 停止迭代的最小容忍偏差
result = copy.deepcopy(source)
result.points = tf_param.transform(result.points)
print("配准用时: %.3f sec.\n" % (time.time() - start))
# 可视化配准结果
target.paint_uniform_color([1, 0, 0])
result.paint_uniform_color([0, 0, 1])
o3d.visualization.draw_geometries([target, result], window_name="CPD算法配准",
                                  width=1024, height=768,
                                  left=50, top=50,
                                  mesh_show_back_face=False)

三、实现效果

3.1原始点云

3.2配准后点云

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/763637.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Top 5 免费 PDF 转 Word 转换工具

PDF 是可移植文档格式的缩写&#xff0c;是一种文件格式&#xff0c;用于独立于软件、硬件或操作系统可靠地呈现和交换文档。PDF 不是为编辑而设计的&#xff0c;因此如果您想更改某些内容&#xff0c;可能需要将 PDF 转换为 Word/Doc 转换器。 Top 5 免费 PDF 转 Word 转换工具…

OFDM关键技术——ICI消除技术

ICI消除算法可以分为以下几类&#xff1a; 1、OFDM符号长度和载波间隔的最优选择&#xff0c;较短的符号周期更有利于降低ICI 2、OFDM基信号的最佳选择&#xff0c;选择频域衰减更快的OFDM基带脉冲 3、自干扰消除技术&#xff0c;将信息调制到一组子载波上 4、频域均衡器&a…

电影交流平台小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;电影类型管理&#xff0c;留言反馈管理&#xff0c;电影中心管理&#xff0c;系统管理 微信端账号功能包括&#xff1a;系统首页&#xff0c;电影中心&#xff0c;留言反馈 开发系统&#xff1a;Window…

Rust Eq 和 PartialEq

Eq 和 PartialEq 在 Rust 中&#xff0c;想要重载操作符&#xff0c;你就需要实现对应的特征。 例如 <、<、> 和 > 需要实现 PartialOrd 特征: use std::fmt::Display;struct Pair<T> {x: T,y: T, }impl<T> Pair<T> {fn new(x: T, y: T) ->…

iptable精讲

SNAT策略 SNAT策略的典型应用环境 局域网主机共享单个公网IP地址接入Internet SNAT策略的原理 源地址转换&#xff0c;Source Network Address Translantion 修改数据包的源地址 部署SNAT策略 1.准备二台最小化虚拟机修改主机名 主机名&#xff1a;gw 主机名&#xff1…

WPF布局控件

目录 Grid StackPanel WrapPanel DockPanel UniformGrid Canvas&InkCanvas Canvas InkCanvas Border Grid 属性 ShowGridLines&#xff1a;显示边线 ColumnDefinitions 列集合 表示有几列下面就写几个ColumnDefinition Width 宽&#xff1a;如果写具体数字则表…

【面试题】IPS(入侵防御系统)和IDS(入侵检测系统)的区别

IPS&#xff08;入侵防御系统&#xff09;和IDS&#xff08;入侵检测系统&#xff09;在网络安全领域扮演着不同的角色&#xff0c;它们之间的主要区别可以归纳如下&#xff1a; 功能差异&#xff1a; IPS&#xff1a;这是一种主动防护设备&#xff0c;不仅具备检测攻击的能力&…

UNet进行病理图像分割

数据集链接&#xff1a;https://pan.baidu.com/s/1IBe_P0AyHgZC39NqzOxZhA?pwdnztc 提取码&#xff1a;nztc UNet模型 import torch import torch.nn as nnclass conv_block(nn.Module):def __init__(self, ch_in, ch_out):super(conv_block, self).__init__()self.conv nn…

JVM原理(十):JVM虚拟机调优分析与实战

1. 大内存硬件上的程序部署策略 这是笔者很久之前处理过的一个案例&#xff0c;但今天仍然具有代表性。一个15万PV/日左右的在线文档类型网站最近更换了硬件系统&#xff0c;服务器的硬件为四路志强处理器、16GB物理内存&#xff0c;操作系统为64位CentOS5.4&#xff0c;Resin…

Android Studio 解决AAPT: error: file failed to compile

1.找到项目下的build.gradle 2.在android语块中添加下面代码 aaptOptions.cruncherEnabled false aaptOptions.useNewCruncher false 12

Linux中的库

什么是库&#xff1f; 库是一组预先编译好的方法/函数的集合&#xff0c;其他程序想要使用源文件中的函数时&#xff0c;只需在编译可执行程序时&#xff0c;链接上该源文件生成的库文件即可。 库分为两类&#xff1a;静态库和动态库 在Linux系统中&#xff0c;以.a为后缀的…

力扣热100 哈希

哈希 1. 两数之和49.字母异位词分组128.最长连续序列 1. 两数之和 题目&#xff1a;给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。你可以假设每种输入只会对应一个答案。…

【NOI-题解】1326. 需要安排几位师傅加工零件1228. 排队打水问题1229. 拦截导弹的系统数量求解

文章目录 一、前言二、问题问题&#xff1a;1326. 需要安排几位师傅加工零件问题&#xff1a;1228. 排队打水问题问题&#xff1a;1229. 拦截导弹的系统数量求解 三、感谢 一、前言 本章节主要对贪心问题进行讲解&#xff0c;包括《1326. 需要安排几位师傅加工零件》《1228. 排…

每天五分钟深度学习:解决for循环效率慢的关键在于向量化

本文重点 上一节课程中,我们学习了多样本的线性回归模型,但是我们的伪代码实现中使用了大量的for循环,这样代码的问题是效率很低。为了克服这一瓶颈,向量化技术应运而生,成为提升程序执行效率、加速数据处理速度的重要手段。 向量化技术概述 向量化(Vectorization)是…

目标检测算法讲解:从传统方法到深度学习,全面解析检测技术的演进与应用!

在计算机视觉领域&#xff0c;目标检测是一个基本且关键的任务&#xff0c;它不仅涉及图像中对象的识别&#xff0c;还包括确定这些对象的具体位置。这一任务通常通过算法来实现&#xff0c;这些算法能够识别出图像中的一个或多个目标&#xff0c;并给出每个目标的类别和位置。…

Kafka-服务端-网络层-源码流程

整体架构如下所示&#xff1a; responseQueue不在RequestChannel中&#xff0c;在Processor中&#xff0c;每个Processor内部有一个responseQueue 客户端发送的请求被Acceptor转发给Processor处理处理器将请求放到RequestChannel的requestQueue中KafkaRequestHandler取出reque…

Python:Python简介

一、Python简介 1.Python的诞生 诞生&#xff1a;1989年圣诞节期间&#xff0c;Guido van Rossum为了打发圣诞节假期的无聊&#xff0c;便开始了Python语言的编写。 命名&#xff1a;Python第一个发行版本是在1991年&#xff0c;起名为Python是源自于Guido喜欢的一档电视节目…

英伟达经济学:云服务商在GPU上每花1美元 就能赚7美元

NVIDIA超大规模和 HPC 业务副总裁兼总经理 Ian Buck 近日在美国银行证券 2024 年全球技术大会上表示&#xff0c;客户正在投资数十亿美元购买新的NVIDIA硬件&#xff0c;以跟上更新的 AI 大模型的需求&#xff0c;从而提高收入和生产力。 Buck表示&#xff0c;竞相建设大型数据…

在 PostgreSQL 中强制执行连接顺序#postgresql认证

让我们首先创建一些表&#xff1a; PgSQL plan# SELECT CREATE TABLE x || id || (id int) FROM generate_series(1, 5) AS id;?column? --------------------------CREATE TABLE x1 (id int)CREATE TABLE x2 (id int)CREATE TABLE x3 (id int)CREATE TABLE…

Centos7网络配置(设置固定ip)

文章目录 1进入虚拟机设置选中【网络适配器】选择【NAT模式】2 进入windows【控制面板\网络和 Internet\网络和共享中心\更改适配器设置】设置网络状态。3 设置VM的【虚拟网络编辑器】4 设置系统网卡5 设置虚拟机固定IP 刚安装完系统&#xff0c;有的人尤其没有勾选自动网络配置…