Linux 高级编程——线程控制


线程控制:互斥与同步

概念:
    互斥 ===》在多线程中对临界资源排他性访问。

    互斥机制 ===》互斥锁  ===》保证临界资源的 访问控制。

    pthread_mutex_t   mutex;
    互斥锁类型        互斥锁变量 内核对象

    框架:
     定义互斥锁 ==》初始化锁 ==》加锁 ==》解锁 ==》销毁
        ****                      ***      ***

     1、定义:
        pthread_mutex_t   mutex;

     2、初始化锁
        int pthread_mutex_init(
            pthread_mutex_t *mutex,
            const pthread_mutexattr_t *attr);
        功能:将已经定义好的互斥锁初始化。
        参数:mutex 要初始化的互斥锁
              atrr  初始化的值,一般是NULL表示默认锁
        返回值:成功 0
                失败 非零
     3、加锁:
        int pthread_mutex_lock(pthread_mutex_t *mutex);
        功能:用指定的互斥锁开始加锁代码
              加锁后的代码到解锁部分的代码属于原子操作
              在加锁期间其他进程/线程都不能操作该部分代码
              如果该函数在执行的时候,mutex已经被其他部分
              使用则代码阻塞。

        参数: mutex 用来给代码加锁的互斥锁
        返回值:成功 0
                失败 非零

     4、解锁
        int pthread_mutex_unlock(pthread_mutex_t *mutex);
        功能:将指定的互斥锁解锁。
              解锁之后代码不再排他访问,一般加锁解锁同时出现。
        参数:用来解锁的互斥锁
        返回值:成功 0
                失败 非零

     5、销毁
         int pthread_mutex_destroy(pthread_mutex_t *mutex);
         功能:使用互斥锁完毕后需要销毁互斥锁
         参数:mutex 要销毁的互斥锁
         返回值:成功  0
                 失败  非零

     6、trylock
        int pthread_mutex_trylock(pthread_mutex_t *mutex);
        功能:类似加锁函数效果,唯一区别就是不阻塞。
        参数:mutex 用来加锁的互斥锁
        返回值:成功 0
                失败 非零
                E_AGAIN

注意:

被互斥锁包含的地方尽量简短

锁的位置就是要小,尽可能做到并发

互斥锁中不会吧延迟函数锁上

上了锁的地方一定要检查某些地方解锁了没。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>

int a = 0;
pthread_mutex_t mutex;
void* th(void* arg)
{
    // pthread_mutex_lock(&mutex);
    int i =5000;
    while(i--)
    {
        pthread_mutex_lock(&mutex);
        int tmp = a;
        printf("a is %d\n",tmp+1);
        a = tmp+1;
        pthread_mutex_unlock(&mutex); 
    }
    // pthread_mutex_unlock(&mutex); 
    return NULL;
}

int main(int argc, char *argv[])
{
    
    pthread_t tid1,tid2;
    pthread_mutex_init(&mutex,NULL);
    pthread_create(&tid1,NULL,th,NULL);
    pthread_create(&tid2,NULL,th,NULL);
    pthread_join(tid1,NULL);
    pthread_join(tid2,NULL);
    pthread_mutex_destroy(&mutex);
    return 0;
}

十个人来银行办业务,
    int a  = 0 ;
    
    while(5000--)
    {
        int temp = a;
        printf("%d",temp+1);
        a =temp+1;
    }

        get win   sleep(rand()%5);
        get win
        get win 
        leave 
         
    10线程,
    count = 3,
    th()
    {
    while(1)
    {
        if( cout >0 )
        {    
            //you
            printf("get totile\n");
            cout--;
            break;
        }
        else
        {
            //sleep(1);
        }
    }
    rand()%5
        sleep(5)
        printf("release totile\n")
        coutt++;
    }
    main()
    {
        pthread_create*10;
        pthread_join();*10
    }
 

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
pthread_mutex_t mutex;
int WIN = 3;
void* th(void* arg)
{
    while(1)
    {
        pthread_mutex_lock(&mutex);
        if(WIN>0)
        {
            WIN--;
            pthread_mutex_unlock(&mutex);
            printf("get win\n");
            sleep(rand()%5);

            printf("relese win\n");
            pthread_mutex_lock(&mutex);
            WIN++;
            pthread_mutex_unlock(&mutex);

            break;
        }
        else 
        {
            pthread_mutex_unlock(&mutex);

        }
    }
    return NULL;
}

int main(int argc, char *argv[])
{
    
    pthread_t tid[10];
    int i = 0 ;
    pthread_mutex_init(&mutex,NULL);
    for(i = 0 ;i<10;i++)
    {
        pthread_create(&tid[i],NULL,th,NULL);
    }
    for(i = 0 ;i<10;i++)
    {
        pthread_join(tid[i],NULL);
    }
    pthread_mutex_destroy(&mutex);
    return 0;
}

               
                
    练习:
        设计一个多线程程序,共享同一块字符数组,分别向该
        数组中写入字符串,保证某一时刻只能有一个线程在操作
        该数组,使用堆区/栈区互斥锁来保证排他性访问。
        
    练习2:
    使用互斥锁完成如下功能:
    设计多线程程序,同时对指定的文件进行写操作
    要求每个线程写入的信息不能覆盖和交叉。
    文件中的数据要是输入信息的总和不能丢失。
   
  

 线程的同步 ===》同步 
  ===》有一定先后顺序的对资源的排他性访问。

    原因:互斥锁可以控制排他访问但没有次序。

    linux下的线程同步  ===》信号量机制 ===》semaphore.h   posix 
    sem_open();

信号量是内核中的操作,
    信号量的分类:
    1、无名信号量 ==》线程间通信
    2、有名信号量 ==》进程间通bn

    

框架:
    信号量的定义 ===》信号量的初始化 ==》信号量的PV操作
    ===》信号量的销毁。

    semaphore 
    1、信号量的定义 :
       sem_t            sem;
       信号量的类型     信号量的变量

    2、信号量的初始化
        int sem_init(sem_t *sem, int pshared, unsigned int value);
        功能:将已经定义好的信号量赋值。
        参数:sem 要初始化的信号量
              pshared = 0 ;表示线程间使用信号量
                      !=0 ;表示进程间使用信号量
              value 信号量的初始值,一般无名信号量
              都是二值信号量,0 1 
              0 表示红灯,进程暂停阻塞
              1 表示绿灯,进程可以通过执行
        返回值:成功  0
                失败  -1;
    3、信号量的PV 操作
       P ===》申请资源===》申请一个二值信号量 
       V ===》释放资源===》释放一个二值信号量

二值信号量;0或者1;

       P操作对应函数 ==》sem_wait();
       V操作对应函数 ==》sem_post();

需要进行交叉操作。申请自己的,释放对方的。

    int sem_wait(sem_t *sem);
    功能:判断当前sem信号量是否有资源可用。
          如果sem有资源(==1),则申请该资源,程序继续运行
          如果sem没有资源(==0),则线程阻塞等待,一旦有资源
          则自动申请资源并继续运行程序。

          注意:sem 申请资源后会自动执行 sem = sem - 1;
    参数:sem 要判断的信号量资源
    返回值:成功 0 
            失败 -1
        
    int sem_post(sem_t *sem);
    功能:函数可以将指定的sem信号量资源释放
          并默认执行,sem = sem+1;
          线程在该函数上不会阻塞。
    参数:sem 要释放资源的信号量
    返回值:成功 0
            失败 -1;

    4、信号量的销毁
       int sem_destroy(sem_t *sem);
       功能:使用完毕将指定的信号量销毁
       参数:sem要销毁的信号量
       返回值:成功 0
                失败  -1;

  实现先打印hello,紧接着打印world

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>
sem_t sem_H,sem_W;
void* th1(void* arg)
{
    int i =10;
    while(i--)
    {
        sem_wait(&sem_H);
        printf("hello");
        fflush(stdout);
        sem_post(&sem_W);
    }
    return NULL;
}
void* th2(void* arg)
{
    int i =10;
    while(i--)
    {
        sem_wait(&sem_W);
        printf(",world\n");
        sleep(1);
        sem_post(&sem_H);
    }
    return NULL;
}

int main(int argc, char *argv[])
{

    pthread_t tid1,tid2;
    sem_init(&sem_H,0,1);
    sem_init(&sem_W,0,0);
    pthread_create(&tid1,NULL,th1,NULL);
    pthread_create(&tid2,NULL,th2,NULL);
    pthread_join(tid1,NULL);
    pthread_join(tid2,NULL);

    sem_destroy(&sem_H);
    sem_destroy(&sem_W);
    return 0;
}

 实现银行示例用信号量。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>
sem_t sem_WIN;
void* th(void* arg)
{
    sem_wait(&sem_WIN);
    printf("get win\n");
    sleep(rand()%5);
    printf("relese win\n");
    sem_post(&sem_WIN);
    return NULL;
}

int main(int argc, char *argv[])
{
    srand(time(NULL));
    pthread_t tid[10];
    int i = 0 ;
    //计数信号量
    sem_init(&sem_WIN,0,3);
    for(i = 0 ;i<10;i++)
    {
        pthread_create(&tid[i],NULL,th,NULL);
    }
    for(i = 0 ;i<10;i++)
    {
        pthread_join(tid[i],NULL);
    }
    sem_destroy(&sem_WIN);
    return 0;
}


    pthread_attr_t attr;
    int pthread_attr_init(pthread_attr_t *attr);

  int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachst
ate)
功能:设置线程为分离的属性,线程自己在消亡的时候,释放相关的资源。
    attr,出参,由该函数填充。
    detachstate
        PTHREAD_CREATE_DETACHED:
        设置分离属性的标记
        PTHREAD_CREATE_JOINABLE:
        设置关联的属性:
        
        返回  0 成功
              >0 失败,以及错误号
              
              
              
    int pthread_detach(pthread_t thread);
    功能:设置线程为分离的属性,线程自己在消亡的时候,释放相关的资源。
    参数:thread,需要设置分离属性的tid
    

        返回  0 成功
              >0 失败,以及错误号
              
    pthread_yield();usleep(1000);
    功能:本线程放弃cpu的调度。
    
    
    
    
    
    
    abcabcabcabc
    AAABBBCCC
    
    3~5, 100
    
    
    6线程, mallco 3 
    int mem[3];//1. 0,
    sem_mem 3;
    int mymall0c()
    {
        wait(sem_mem);
        for(i == 0;i<3;i++)
        if( m[i] == 1) 
        return i;
    }
    void myfree(id)
    {
        mem[id]=1;
        sem_post(sem_mem);
    }
    void* th(void* age)    
    {
        int id = mymalloc();
        printf(我拿到di i 个空间);
        sleep(rand()%5);
        
        myfree(id);
        
    
    
    }
    
    main()
    {
    
        pthread_create();//6
        ptread_join();//6
    }
    
    
    
    1,服务员, 3桌子
    
                    20
    1,前台,报菜单,  name,号。
    当前叫号,10,
    sturct()
    {
        name【100】,
        total_num;
        call_num;
        mutex_lock;
    }
    record;
    customer)()
    {
        printf("eat...");
        sleep();
        printf("out");
        sem_post();
    }
    
    waiter()
    {
        while(1)
        {
        wait(desk)    8      10
        if ()//有人  call < total
        pthread_create(aa);
        else
        {
            
        }
    }
    }
    main()
    {
    
        pthread_create();//wait
        
        while()
        fgets,name, total++;
        
    }
    
    

互斥锁(Mutex)和信号量(Semaphore)都是多线程编程中用于实现资源共享和线程同步的机制,但它们在应用场景、实现方式和性能特点上有所不同。以下是它们之间的区别和相同点的详细解释:

区别

  1. 应用场景
    • 互斥锁主要用于线程互斥,确保同一时刻只有一个线程能访问特定的资源,防止资源被多个线程同时访问。
    • 信号量主要用于线程同步,控制对共享资源的访问许可。当资源可用时,允许线程继续操作;当资源被占用时,线程则阻塞直到资源变得可用。
  2. 实现方式
    • 互斥锁的值通常只能为0或1,表示资源是否被锁定。当一个线程获取互斥锁时,其他试图访问该资源的线程将被阻塞,直到锁被释放。
    • 信号量的值可以是任意非负整数,表示可用资源的数量。当信号量的值大于0时,表示有可用资源,线程可以继续操作;当信号量的值为0时,表示没有可用资源,线程需要阻塞直到资源变得可用。
  3. 性能特点
    • 互斥锁在锁定资源时,所有试图访问该资源的线程都会被阻塞,直到资源被解锁。它的实现相对简单,效率较高,但在锁争用激烈的场景下,可能会带来较大的性能开销。
    • 信号量在资源被锁定时,允许其他线程继续执行某些任务,直到资源被释放。因此,它更适用于需要等待时间较长的临界区。同时,信号量还可以用于进程间通信,而互斥锁仅用于线程间通信。
  4. 所有权特性
    • 互斥锁具有明确的所有权特性,即同一时间只能有一个任务持有互斥锁,而且只有这个任务可以对互斥锁进行解锁。
    • 信号量并没有明确的所有权特性,一个进程阻塞在某个信号量上时,它无法知道自己阻塞在哪个进程(线程)之上。

相同点

  1. 重要性:对于线程来说,互斥锁和信号量都是非常重要的概念,它们都可以避免死锁或者读脏数据。
  2. 目的:两者的主要目的都是为了保护共享资源,确保线程在访问这些资源时的正确性和一致性。
  3. 基本机制:它们都采用了某种形式的锁定机制来防止多个线程同时访问共享资源。

总结来说,互斥锁和信号量在多线程编程中各有其应用场景和优缺点。在选择使用哪种机制时,需要根据具体的需求和场景进行权衡和选择。

    
    
    
    产生死锁的原因主要是:

(1) 因为系统资源不足。
(2) 进程运行推进的顺序不合适。
(3) 资源分配不当等。
如果系统资源充足,进程的资源请求都能够得到满足,死锁出现的可能性就很低,否则
就会因争夺有限的资源而陷入死锁。其次,进程运行推进顺序与速度不同,也可能产生死锁。
产生死锁的四个必要条件
(1) 互斥条件:一个资源每次只能被一个进程使用。
(2) 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3) 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。优先级问题
(4) 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
 

死锁的原因
 

系统资源不足:当系统中的资源不足以满足所有进程的需求时,进程之间可能会因为争夺资源而产生死锁。
进程运行推进的顺序不合适:即使系统资源充足,如果进程请求资源的顺序不当,也可能导致死锁。例如,进程A拥有资源1并请求资源2,而进程B拥有资源2并请求资源1,此时就可能出现循环等待,导致死锁。
资源分配不当:资源分配策略的不当也可能导致死锁。例如,某些资源分配算法可能倾向于将资源分配给某些进程,而忽略其他进程的需求,从而增加了死锁的风险。

死锁的四个必要条件


互斥条件(Mutual Exclusion):一个资源每次只能被一个进程使用。即资源是独占的,当一个进程持有一个资源时,其他进程不能同时访问它。


请求与保持条件(Hold and Wait):一个进程因请求资源而阻塞时,对已获得的资源保持不放。即进程已经持有一些资源,但又提出了新的资源请求,而该资源又被其他进程占有,此时请求进程阻塞,但又对自己持有的资源保持不放。


不剥夺条件(No Preemption):进程已获得的资源,在末使用完之前,不能强行剥夺。即资源只能由获得它的进程自己来释放,进程之间不能相互剥夺对方的资源。


循环等待条件(Circular Wait):若干进程之间形成一种头尾相接的循环等待资源关系。即存在一个等待资源的循环链,链中每个进程已获得的资源同时被链中下一个进程所请求。


只有当这四个条件同时成立时,系统中才可能发生死锁。因此,在设计和实现并发系统时,通常会采取一些策略来避免或解决死锁问题,如预防策略(破坏四个条件中的至少一个)、避免策略(在资源分配之前判断是否会导致死锁)、检测和恢复策略(允许死锁发生,但系统能够检测到死锁并采取相应的措施来恢复)。

  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/763465.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Kafka-服务端-副本同步-源码流程

杂 在0.9.0.0之前&#xff0c;Kafka提供了replica lag.max.messages 来控制follower副本最多落后leader副本的消息数量&#xff0c;follower 相对于leader 落后当超过这个数量的时候就判定该follower是失效的&#xff0c;就会踢出ISR&#xff0c;这里的指的是具体的LEO值。 对…

Hadoop权威指南-读书笔记-01-初识Hadoop

Hadoop权威指南-读书笔记 记录一下读这本书的时候觉得有意思或者重要的点~ 第一章—初识Hadoop Tips&#xff1a; 这个引例很有哲理嘻嘻&#x1f604;&#xff0c;道出了分布式的灵魂。 1.1 数据&#xff01;数据&#xff01; 这一小节主要介绍了进入大数据时代&#xff0c;面…

【windows|012】光猫、路由器、交换机详解

&#x1f341;博主简介&#xff1a; &#x1f3c5;云计算领域优质创作者 &#x1f3c5;2022年CSDN新星计划python赛道第一名 &#x1f3c5;2022年CSDN原力计划优质作者 ​ &#x1f3c5;阿里云ACE认证高级工程师 ​ &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社…

QML学习——Qt Quick Extras Examples 1.4(八)

Qt Quick Extras Examples 阅读官方的源码然后尝试做了下 01 A car dashboard 样例演示&#xff1a; 说明&#xff1a; ValueSource组件控制数值相关的动画&#xff0c;例如图中数值的变化&#xff1b;TurnIndicator组件是控制左右方向灯的闪烁和背景&#xff0c;里面使用…

excel修改批量一列单价的金额并保留1位小数

1.打开表格&#xff0c;要把单价金额变成现在的两倍&#xff0c;数据如下&#xff1a; 2.把单价这一列粘贴到一个新的sheet页面&#xff0c;在B2单元格输入公式&#xff1a;A2*2 然后按enter回车键,这时候吧鼠标放到B2单元格右下角&#xff0c;会出现一个黑色的小加号&#xf…

SQL 注入联合查询之为什么要 and 1=2

在 SQL 注入联合查询中&#xff0c;将 id 先置为假&#xff08;如 id-1 或其他使查询结果为空的条件&#xff09;&#xff0c;通常是为了让前面的查询语句查询不到结果&#xff0c;从而使联合查询中后面的语句结果能够显示在回显位上

【深度学习】pytorch训练中的一个大坑

使用的命令&#xff1a;iostat -x 5 可以看到 ssd的利用率已经满了。 之前在的数据集放在了 hdd上&#xff0c;训练结果特别慢。 所以我把它移动到了ssd上&#xff0c;然后训练参数用的 resume&#xff0c; 但是&#xff01;&#xff01;&#xff01;&#xff01;它把历史记住…

虚拟环境管理

虚拟环境 在使用 Python 时我们一般使用“pip install 第三方包名”来安装第三方包&#xff0c;但是由于pip的特性&#xff0c;系统只能安装每个包的一个版本。而在实际开发中&#xff0c;可能同时开发多个项目&#xff0c;如&#xff1a;上图有三个项目&#xff1b;每个项目需…

摄影后期色彩管理流程(Lightroom篇)

在摄影后期处理中&#xff0c;色彩管理是确保图像从捕捉到输出的一致性和准确性的关键。Lightroom 和 Photoshop 其实已经将这套色彩管理流程作为默认选项&#xff0c;如果实质操作时仍存在色彩偏差的问题&#xff0c;可参考以下内容。 ProPhoto RGB > Adobe RGB > sRGB …

幻兽帕鲁服务器如何安装模组安装

由于模组多数为Window版本的&#xff0c;所以本教程以服务端为Window的作为演示&#xff08;Linux服务端的也是一样的操作&#xff09;百度莱卡云开服 如果你你是Linux版本的&#xff0c;请点击跳转切换服务端教程 接下来是本地安装模组包的方法&#xff08;服务器自带&#xf…

Web3 游戏周报(6.23 - 6.29)

区块链游戏热度不减&#xff0c;你是否掌握了上周的重要动态&#xff1f; 回顾上周区块链游戏动态&#xff0c;查看 Footprint Analytics 与 ABGA 的最新数据报告。 【6.23 - 6.29】Web3 游戏行业动态&#xff1a; 继 Notcoin 之后&#xff0c;另一款 Telegram 游戏 Hamster …

React实战学习(一)_棋盘设计

需求&#xff1a; 左上侧&#xff1a;状态左下侧&#xff1a;棋盘&#xff0c;保证胜利就结束 和 下过来的不能在下右侧&#xff1a;“时光机”,保证可以回顾&#xff0c;索引 语法&#xff1a; 父子之间属性传递&#xff08;props&#xff09;子父组件传递&#xff08;写法上&…

【MySQL篇】Percona XtraBackup物理备份工具的基础理论概述(第一篇,总共五篇)

&#x1f4ab;《博主介绍》&#xff1a;✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ &#x1f4ab;《擅长领域》&#xff1a;✌️擅长Oracle、MySQL、SQLserver、阿里云AnalyticDB for MySQL(分布式数据仓库)、Linux&#xff0c;也在扩展大数据方向的知识面✌️…

​产品经理-困惑4:产品面对开发是否低人一等(4)

在互联网当中,做产品的,在面对开发是否觉得低人一等&#xff1f; 完全不会 从团队层面来看&#xff0c;任何互联网团队都是由开发、产品、视觉、运营、市场等专业人才所组成的专业团队 每人各有专攻&#xff0c;为同一个目标&#xff08;即项目成功&#xff09;而不懈努力。各工…

带安全启动—Ubuntu系统—手动安装Nvidia驱动

教程1&#xff1a;在启用安全启动的 Fedora 中安装英伟达驱动 教程2&#xff1a;UEFI安全启动模式下安装Ubuntu的NVIDIA显卡驱动 1. 搜索合适的驱动 Nvidia驱动官网 选择这个 驱动(.run)链接 2. 安装必要的软件依赖 CUDA底层用C写的&#xff0c;因此导入编译器 sudo apt i…

1-4.时间序列数据建模流程范例

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名–章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…

已解决java.io.NotSerializableException:对象不支持序列化的正确解决方法,亲测有效!!!

已解决java.io.NotSerializableException&#xff1a;对象不支持序列化的正确解决方法&#xff0c;亲测有效&#xff01;&#xff01;&#xff01; 目录 问题分析 出现问题的场景 示例代码 报错原因 解决思路 解决方法 1. 实现Serializable接口 修改后的Employee类 2…

递归----计算P函数

注意运算中的符号不能少&#xff01;&#xff01;&#xff01;&#xff01; * 必须体现出&#xff01;&#xff01;&#xff01;&#xff01; #include <stdio.h>double P( int n, double x );int main() {int n;double x;scanf("%d %lf", &n, &x);pri…

计算机毕业设计Python+Spark股票基金推荐与预测系统 股票基金可视化 股票基金推荐系统 股票基金可视化系统 股票基金数据分析 股票基金爬虫大数据

目 录 摘 要 Abstract 第1章 前 言 1.1 项目的背景和意义 1.2 研究现状 1.3 项目的目标和范围 1.4 论文结构简介 第2章 技术与原理 2.1 开发原理 2.2 开发工具 2.3 关键技术 第3章 需求建模 3.1 系统可行性分析 3.2 功能需求分析 3.3 非功能性…

opengl箱子的显示

VS环境配置&#xff1a; /JMC /ifcOutput "Debug\" /GS /analyze- /W3 /Zc:wchar_t /I"D:\Template\glfwtemplate\glfwtemplate\assimp" /I"D:\Template\glfwtemplate\glfwtemplate\glm" /I"D:\Template\glfwtemplate\glfwtemplate\LearnOp…