开源205W桌面充电器,140W+65W升降压PD3.1快充模块(2C+1A口),IP6557+IP6538

开源一个基于IP6557和IP6538芯片的205W升降压快充模块(140W+65W),其中一路C口支持PD3.1协议,最高输出28V5A,另一路是A口+C口,最高输出65W(20V3.25A),可搭配一个24V10A的开关电源使用,即可组成一个低成本的205瓦快充充电器!最高转换效率96.7%

做得一般,大佬们勿喷,如果觉得有哪些地方可以改进一下的可以在评论区提一下建议,欢迎友善交流。

提供全套资料,完全可以自己复刻,资料下载地址在文章末尾!

视频演示:https://www.bilibili.com/video/BV1HM4m1U7Hc/

立创开源平台开源链接: https://url.zeruns.tech/99439

电子/单片机技术交流QQ群:820537762

前言

这个快充模块搭配一个24V10A的开关电源使用,即可组成一个低成本的205瓦两路快充充电器!(24V10A的电源大概30元左右可以买到)

弄个点烟器插头转DC公头/XT30接口的转接线还可以将它变成车载快充,140W+65W的车载充电器!

快充模块输入接口有XT30和DC5.5(2个输入接口不能同时使用,输入接口间是并联的!)。

模块输入电压范围:8.2~31V

C1口是升降压的,输入电压可以比输出低,C2口和A口是降压的,输出电压只能低于输入电压!

IP6557这款芯片我买了8片,全焊上去,其中4片是坏的(故障现象各种各样),只有4片是好的,不知道是芯片质量/品控问题还是还是我焊接问题(加热台温度设置230度,没有虚焊)。IP6538芯片就全都是好的,没有出现过问题,这两款芯片都是同一家店买的。

我做了几个成品出来,需要买成品的可以进群问。

参数和介绍

C1口(IP6557)

第一个Type-C的电源芯片为英集芯(INJOINIC)的IP6557-C,最高输出功率140W,最高输出28V/5A(实际最高可去到6A)。

输入电压范围:5~31V

这个芯片是升降压的所以输出电压可以比输入高。

支持的快充协议有:

  • PD3.1/PPS/ERP28V
  • BC1.2 和 APPLE
  • QC2.0/QC3.0/QC3+/QC4+/QC5
  • FCP 和 HSCP
  • AFC
  • MTK
  • UFCS(融合快充)

支持 5V、9V、12V、15V、20V、28V 电压输出。

PPS 支持 3.3V-21V,10mV/step 的电压输出。

C2和A1口(IP6538)

第二个Type-C口和Type-A口的电源芯片为IP6538-AC-65W,单C口使用时最高输出20V/3.25A,最高功率65W;当双口同时使用时,双口都输出5V,总功率5V/4.8A。

输入电压范围:8.2V~32V(两个芯片共用输入口,所以还是按最大31V)

这个芯片是降压的,所以输出电压不会大于输入电压,要想输出65W的功率,那输入电压得21V以上

注意:IP6538有45W和65W两个版本,不带-65W后缀的就是45W的!(下面资料里提供的是45W版的数据手册,65W版的找不到数据手册)

支持的快充协议有:

  • PD2.0 / PD3.0(PPS),Type-A口不支持PD协议
  • BC1.2、Apple、三星协议
  • QC2.0 和 QC3.0
  • MTK PE+1.1 和 MTK PE+2.0
  • 华为快充协议 FCP / SCP
  • 三星快充协议 AFC
  • 展讯快充协议 SFCP
  • OPPO快充协议 VOOC / Super VOOC (65W版的芯片好像不支持OPPO快充协议,45W版没测试,也有可能是需要原装线才能触发)

支持 5V、9V、12V、15V、20V 电压输出。

PPS 支持 3.3V~11V,20mV/step 电压输出。

实物图

电路板正面

电路板背面,下图中的飞线是因为英集芯官方数据手册的应用原理图里线的交叉处没有用点来表示相连,导致我画图时画错了,没有连起来,只能用飞线了,我发布出来的原理图和PCB已修复这个问题。

电路板侧面

装上外壳后

这个铝合金外壳是买的成品,然后前后盖是自己3D打印的。

拓竹P1SC 3D打印机开箱体验:https://blog.zeruns.tech/archives/770.html

焊好的IP6557芯片微距图

焊好的IP6538芯片微距图

使用说明&注意事项

1. 要输出28V/5A的必须要带E-Marker芯片的数据线,且支持PD3.1协议,如下图所示。

2. 板子的输入电流采样电阻(检流电阻)R2是5mΩ的,IP6557芯片的输入电流限流值设定在10A,如果输入电压为12V时要输出140W的功率所需的输入电流最小为12A,超过限流值了,会导致输出电压下降,达不到满功率,可以将输入电流采样电阻R2换一个更小阻值的,比如2.5mΩ(可以两个5mΩ并联),这样就可以实现12V低电压输入也可以满功率输出,但这样由于输入电流大了很多,mos管的发热会非常高,必须做好散热!

下面两张图一张是改检流电阻前的,输入电流被限制在10A以内;另一张是改检流电阻后的,输入电流可以超过10A了,可以在12V输入时输出28V/5A,由于我可调电源最大输出12A电流,不够用,所以输入电压我调到14V。

3. 如果要选用其他型号的mos管要注意MOS管的Ciss参数必须小于1000pF,因为IP6557的开关频率为250kHz,较高的开关频率对MOS管的输入电容参数要求较为严格!过高的Ciss会影响MOS管开启和关断的时间。

协议支持测试

C1口支持的协议如下图所示:

C1口还支持UFCS协议,不过只支持到33W。

C2口支持的协议如下图所示:

A口支持的协议如下图所示:

输出带载测试

C1口测试,XT30接口输入24V,输出诱骗28V接电子负载,电子负载设置5.3A电流。

C2口测试

A口测试

两路满载输出测试

测试用到的设备:

  • 惠普34401A六位半万用表:https://blog.zeruns.tech/archives/772.html
  • 睿登RD6012P数控可调电源:https://blog.zeruns.tech/archives/740.html
  • 普源(RIGOL) DHO914S示波器:https://blog.zeruns.tech/archives/764.html
  • 炬为电子负载:https://s.click.taobao.com/2sdCaht
  • 优利德UTi261M热成像仪开箱测评:https://blog.zeruns.tech/archives/798.html
  • WITRN维简C5检测仪(USB电压电流表/CC表):https://s.click.taobao.com/Sy2Daht

转换效率测试

下面测试了几组不同输入和输出电压下的效率,分别接的C1和C2口测试。

IP6557

最高转换效率95.468%

输入电压(V)输入电流(A)输入功率(W)输出电压(V)输出电流(A)输出功率(W)转换效率(%)
23.9976.459154.99727.5925.323146.87294.758
11.9999.598115.16619.9805.345106.79392.729
8.2998.89773.83620.0303.33666.82090.498
23.9974.686112.45020.1005.341107.35495.468
23.9971.76442.33112.0013.33740.04794.606

IP6538

最高转换效率96.719%

输入电压(V)输入电流(A)输入功率(W)输出电压(V)输出电流(A)输出功率(W)转换效率(%)
24.0080.79519.0865.1653.31517.12289.708
24.0081.26530.37012.2172.33528.52793.930
24.0082.91069.86320.2433.33867.57196.719
24.0080.93322.3999.0842.24520.39491.045

发热情况热成像图

C1口140W满载输出5分钟后的PCB正反面热成像图片,MOS管温度最高去到111℃以上,要满载输出必须加散热片或加铝合金外壳,且通过导热垫导热到外壳上。


C2口65W满载输出10分钟后的PCB正反面热成像图片,IP6538芯片最高温度75℃左右,无需加散热片也可以长时间满载运行。


两路同时满载输出10分钟后的铝合金外壳热成像图,外壳最高温度65℃左右,由于这个外壳是上下分离的,中间有缝隙,所以热量很难传导到上壳,都集中在下壳了。

纹波测试

纹波率计算公式:

纹波率 = ( 纹波峰值 − 纹波谷值 ) / 2 输出平均电压 × 100 % 纹波率 = \frac{(纹波峰值 - 纹波谷值)/2}{输出平均电压} \times 100\% 纹波率=输出平均电压(纹波峰值纹波谷值)/2×100%

C1口输出28V(实际27.6V)时的纹波峰峰值在33mV左右,纹波率0.059%

C1口输出28V5.2A时的纹波峰峰值在178mV左右,纹波率0.323%

C2口输出20V空载时的纹波峰峰值在25mV左右,纹波率0.062%

C2口输出20V3.3A时的纹波峰峰值在54mV左右,纹波率0.133%

纹波表现还不错。

原理图

IP6557:

IP6538:

PCB

顶层:

底层:

元件购买地址

这个项目用到的大部分元件购买地址都在这里:https://blog.zeruns.tech/archives/801.html

建议在立创商城里购买元器件:https://activity.szlcsc.com/invite/D03E5B9CEAAE70A4.html

在立创开源链接里的BOM表那点立即到立创商城下单可将用到的元器件一键导入到购物车。

资料下载地址

下面下载链接包含:立创EDA工程、原理图PDF文件、用到的各种芯片的数据手册、外壳3D模型文件。

百度网盘下载链接:https://pan.baidu.com/s/1RJNC_v2P1YijWpv1sFXowQ?pwd=89hi 提取码:89hi

123云盘下载链接:https://www.123pan.com/s/2Y9Djv-BItvH.html 提取码:0nEm

如果觉得对你有用的可以进去上面的123云盘链接里给我打赏,如果是微信文章(公众号:zeruns-gzh)的也可以点击文章下方的喜欢作者给我打赏,谢谢。

其他开源项目推荐

  • 做了个三相电量采集器开源出来,可以方便监测家里用电情况: https://blog.zeruns.tech/archives/771.html
  • 基于STM32F407的LVGL工程模板(MSP3526屏幕),包含FreeRTOS版和裸机版:https://blog.zeruns.tech/archives/788.html
  • 基于STM32的同步整流Buck-Boost数字电源 开源: https://blog.zeruns.tech/archives/791.html
  • LM25118自动升降压可调DCDC电源模块:https://blog.zeruns.tech/archives/727.html
  • EG1164大功率同步整流升压模块开源,最高效率97%:https://blog.zeruns.tech/archives/730.html
  • 基于合宙Air700E的4G环境监测节点(温湿度、气压等数据),通过MQTT上传阿里云物联网平台:https://blog.zeruns.tech/archives/747.html
  • 基于CH32V307的智能电子负载开源,嵌入式大赛作品开源: https://blog.zeruns.tech/archives/785.html
  • EG1151大功率同步整流可调升降压电源模块(支持TypeC PD快充输入)开源:https://blog.zeruns.tech/archives/794.html

推荐阅读

  • 高性价比和便宜的VPS/云服务器推荐: https://blog.zeruns.tech/archives/383.html
  • 我的世界开服教程:https://blog.zeruns.tech/tag/mc/
  • 免代码搭建博客网站!超详细个人博客搭建教程:https://blog.zeruns.tech/archives/783.html
  • 雨云 宁波 8272CL 大带宽高防云服务器性能测评,最高500兆带宽和1TB云盘:https://blog.zeruns.tech/archives/789.html
  • 抖音商城2.6元的120W充电器测试和拆解:https://blog.zeruns.tech/archives/786.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/762936.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu20.04 安装 cudatookit 12.2 + cudnn 安装

最简约的部署Ubuntu20.04深度学习环境的教程 1. 安装Ubuntu20.04 系统 B站详细的安装教程 简约安装版 2. 安装Nvidia显卡驱动 我参考了各种资料,重装系统,完美解决开机显示器黑屏无法进入桌面的情况 黑屏问题主要是由linux内核更新导致,…

混合注意力机制 -- Convolutional Block Attention Module(CBAM)

CBAM CBAM 模块概述 通道注意力模块(Channel Attention Mechanism)和空间注意力模块(Spatial Attention Mechanism)是注意力机制的两种主要形式,它们分别通过对通道维度和空间维度的特征图进行加权,从而使…

算法金 | Transformer,一个神奇的算法模型!!

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在现代自然语言处理(NLP)领域,Transformer 模型的出现带来了革命性的变…

每日一题-验证回文串

&#x1f308;个人主页&#xff1a;羽晨同学 &#x1f4ab;个人格言:“成为自己未来的主人~” //验证回文串 #include<vector> class Solution { public:bool reverseString(char s) {return (s > a && s < z) ||(s > 0 && s < 9) ||(s…

Lesson 43 Hurry up!

Lesson 43 Hurry up! 词汇 of course 当然【口语】 经常出现在口语交际中&#xff1a; Of course not. 当然不。 同义词&#xff1a; Certainly 当然。 Certainly not. 当然不。 注意语气&#xff1a;略带挑衅。Sure. 当然。 Sure not. 当然不。 Not sure. 不一定。 kettle…

Pandas 学习笔记(一)

一、pandas简介 Pandas 是 Python 语言的一个扩展程序库&#xff0c;用于数据分析。 Pandas 名字衍生自术语 "panel data"&#xff08;面板数据&#xff09;和 "Python data analysis"&#xff08;Python 数据分析&#xff09;。 Pandas 是一个开放源码…

Python + OpenCV 酷游地址教学V鄋KWK3589

本篇文章汇整了一系列的Python OpenCV 教学&#xff0c;只要按照教学文的顺序阅读和实作&#xff0c;就可以轻松入门OpenCV&#xff0c;并透过OpenCV 实现许多影像相关的创意应用。 接下来我们来介绍OpenCV-- OpenCV 是一个跨平台的电脑视觉函式库( 模组) &#xff0c;可应用…

CesiumJS【Basic】- #042 绘制纹理线(Primitive方式)

文章目录 绘制纹理线(Primitive方式)1 目标2 代码2.1 main.ts3 资源文件绘制纹理线(Primitive方式) 1 目标 使用Primitive方式绘制纹理线 2 代码 2.1 main.ts var start = Cesium.Cartesian3

SSM泰华超市商品管理系统-计算机毕业设计源码11946

目 录 摘要 1 绪论 1.1 研究背景 1.2 研究意义 1.3论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据新增流程 3.2.2 数据删除流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分析 2.5本章小结 3 系统总体设…

一键把二次元老婆拉进现实(Stable Diffusion进阶:ControlNet LineArt模型)

大家好我是极客菌&#xff01;&#xff01;&#xff01; 操作&#xff0c;就能将二次元老婆拉进现实&#xff0c;成为你的专属女友。本文将带你深入了解ControlNet LineArt模型的使用方法&#xff0c;助你轻松实现这一梦想。 ControlNet LineArt模型是Stable Diffusion的最新…

AI大模型日报#0701:Meta发布LLM Compiler、扒一扒Sora两带头人博士论文

导读&#xff1a;AI大模型日报&#xff0c;爬虫LLM自动生成&#xff0c;一文览尽每日AI大模型要点资讯&#xff01;目前采用“文心一言”&#xff08;ERNIE-4.0-8K-latest&#xff09;生成了今日要点以及每条资讯的摘要。欢迎阅读&#xff01;《AI大模型日报》今日要点&#xf…

32.哀家要长脑子了!

1.299. 猜数字游戏 - 力扣&#xff08;LeetCode&#xff09; 公牛还是挺好数的&#xff0c;奶牛。。。妈呀&#xff0c;一朝打回解放前 抓本质抓本质&#xff0c;有多少位非公牛数可以通过重新排列转换公牛数字&#xff0c;意思就是&#xff0c;当这个数不是公牛数字时&#x…

控制器方法执行流程和 @InitBinder【Spring源码学习】

控制器方法执行流程 InitBinder 加在ControllerAdvice中 首先说明ControllerAdvice和aop没有任何关系&#xff01; 加在ControllerAdvice中只对所有控制器都生效 全局的在开始时就会保存到handlerMappingAdapter中的cache中&#xff1b; 加在Controller中 加在controller中只对…

TS---typescript的安装和tsc命令使用

什么是TS---typescript&#xff1f; &#xff08;TypeScript是Microsoft公司注册商标&#xff09; TypeScript具有类型系统&#xff0c;且是JavaScript的超集&#xff0c; 它可以编译成普通的JavaScript代码。TypeScript支持任意浏览器&#xff0c;任意环境&#xff0c;任意系…

仓库管理系统24--统计报表

原创不易&#xff0c;打字不易&#xff0c;截图不易&#xff0c;多多点赞&#xff0c;送人玫瑰&#xff0c;留有余香&#xff0c;财务自由明日实现 1、引用LiveCharts 2、创建LiveChartViewModel using GalaSoft.MvvmLight; using LiveCharts.Wpf; using LiveCharts; using Sy…

手把手搞定报名亚马逊科技认证

引言 亚马逊云科技认证考试为我们这些技术从业者提供了提升专业技能的机会。无论选择线上还是线下考试&#xff0c;每种方式都有其独特的优势和挑战。选择合适的考试方式将帮助我们更好地展示自己的技术水平。以下是我对不同考试方式的优缺点介绍&#xff0c;以及各科目的考试…

Java案例抢红包

目录 一&#xff1a;题目要求&#xff1a; 二&#xff1a;思路分析&#xff1a;&#xff08;遇见问题先想出完整的思路逻辑再去动手事半功倍&#xff09; 三&#xff1a;具体代码&#xff1a; 一&#xff1a;题目要求&#xff1a; 二&#xff1a;思路分析&#xff1a;&#x…

基于隐马尔可夫模型的股票预测【HMM】

基于机器学习方法的股票预测系列文章目录 一、基于强化学习DQN的股票预测【股票交易】 二、基于CNN的股票预测方法【卷积神经网络】 三、基于隐马尔可夫模型的股票预测【HMM】 文章目录 基于机器学习方法的股票预测系列文章目录一、HMM模型简介&#xff08;1&#xff09;前向后…

Python容器 之 列表--下标和切片

列表的切片 得到是 新的列表字符串的切片 得到是 新的字符串 如果下标 不存在会报错 list1 [1, 3.14, "hello", False] print(list1)# 获取 列表中 第一个数据 print(list1[0]) # 1# 获取列表中的最后一个数据 print(list1[-1]) # [False]# 获取中间两个数 即 3.1…

面经-数据库

1.MySQL 1.1什么是MySQL? MySQL 是⼀种关系型数据库&#xff0c;在 Java 企业级开发中⾮常常⽤&#xff0c;因为 MySQL 是开源免费的&#xff0c;并 且⽅便扩展。阿⾥巴巴数据库系统也⼤量⽤到了 MySQL &#xff0c;因此它的稳定性是有保障的。 MySQL 是开放源代码的&…