算法金 | Transformer,一个神奇的算法模型!!


大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」

抱个拳,送个礼

在现代自然语言处理(NLP)领域,Transformer 模型的出现带来了革命性的变化。它极大地提升了语言模型的性能和效率,而自注意力机制是其中的核心组件。

今个儿我们将通过五个阶段,逐步深入讲解自注意力机制,帮助大侠一窥其原理和应用,成功实现变身(装 X )

第一阶段:自注意力机制基础

在处理语言和文字时,我们经常需要理解一个句子中的单词是如何相互关联的。例如,在句子“猫追着老鼠跑”中,我们需要知道“猫”是追的主体,“老鼠”是被追的对象。传统的方法在理解这些关系时有一些困难,特别是当句子变得很长时。自注意力机制是一种新的方法,可以更好地理解句子中单词之间的关系,无论句子有多长。

自注意力机制的核心思想是:每个单词都能“注意到”句子中的其他单词,并根据这些单词来调整自己。这有点像我们在读一篇文章时,会注意到一些关键的词句来帮助我们理解文章的整体意思。

第二阶段:自注意力机制的工作原理

在自注意力机制中,每个单词会看向句子中的其他单词,并计算一个注意力得分。这些得分表示每个单词对其他单词的关注程度。这个过程可以理解为每个单词都在问自己:“我应该关注哪些单词?”

计算注意力得分

以句子“我喜欢吃苹果”为例:

  • “我”计算它对“喜欢”、“吃”和“苹果”的注意力得分。
  • 每个单词的得分会被转换成一个概率,表示它在句子中有多重要。

注意力得分会被一种叫做 softmax 的方法转换成概率。这种方法确保所有的得分加起来等于 1,这样我们就可以知道每个单词的重要性。例如:

  • “我”可能对“喜欢”的关注度是 0.4,对“吃”的关注度是 0.3,对“苹果”的关注度是 0.3。
  • 这些得分表示“我”最关注的是“喜欢”,其次是“吃”和“苹果”。

生成新表示

每个单词会根据这些概率得分,重新组合句子中的信息,生成新的表示。这就像我们在阅读一篇文章时,会根据每句话的重要性来总结文章的核心内容。

防失联,进免费知识星球,直达算法金 AI 实验室 https://t.zsxq.com/ckSu3

更多内容,见免费知识星球

第三阶段:查询、键和值

在自注意力机制中,每个单词都被表示为三个向量:查询(Query)、键(Key)和值(Value)。这些向量帮助我们计算注意力得分,并生成新的单词表示。

查询(Query)

查询向量表示我们希望了解的单词。每个单词都有一个查询向量,用于计算它与其他单词的关系。

键(Key)

键向量表示句子中每个单词的特征。查询向量会与键向量进行对比,计算出注意力得分。

值(Value)

值向量表示句子中每个单词的具体内容。注意力得分会作用于值向量,以生成新的单词表示。

示例

以句子“我喜欢吃苹果”为例:

  • “我”的查询向量会与“喜欢”、“吃”和“苹果”的键向量进行对比,计算出它们的注意力得分。
  • 这些得分会用于加权“喜欢”、“吃”和“苹果”的值向量,生成“我”的新表示。

多头注意力机制

为了更好地捕捉句子中不同方面的信息,Transformer 引入了多头注意力机制。这个机制允许我们并行地计算多组查询、键和值向量,捕捉不同的关系。

多头注意力机制的步骤

  1. 分组:将查询、键和值向量分成多组,每组称为一个“头”。
  2. 独立计算:每个头独立计算注意力得分,并生成新的表示。
  3. 拼接与变换:将所有头的结果拼接起来,并通过一个线性变换生成最终的输出。

例子

假设我们有两个头:

  • 第一头可能主要关注“我”和“喜欢”的关系。
  • 第二头可能主要关注“吃”和“苹果”的关系。通过这种方式,多头注意力机制可以更全面地理解句子中的不同关系。

第四阶段:残差连接和层归一化

残差连接(Residual Connection)

残差连接是一种技术,它通过在网络层之间添加直接的跳跃连接,帮助缓解深度神经网络中的梯度消失问题。

原理

在每一层的输出中,我们会添加上这一层的输入。这可以用公式表示为:

其中,Layer(𝑥) 表示这一层的计算结果,𝑥 是输入。

优点

  • 缓解梯度消失问题:残差连接允许梯度直接通过跳跃连接传播,从而保持梯度不至于消失。
  • 更快的训练速度:残差连接使得网络更容易训练,减少了训练时间。

示例

假设我们有一个句子“我喜欢吃苹果”,经过一层自注意力机制处理后,我们会将这一层的输出与原始输入相加,生成新的表示。这使得信息更好地在网络中传播。

层归一化(Layer Normalization)

层归一化是一种技术,它通过对每一层的输出进行归一化处理,帮助加速训练和提高模型稳定性。

原理

层归一化会对每一层的输出进行归一化处理,使得输出的均值为 0,方差为 1。这可以用公式表示为:

优点

  • 提高训练速度:层归一化使得网络层的输出更为稳定,加快了训练速度。
  • 提高模型稳定性:通过归一化处理,减少了网络层之间的数值波动,提高了模型的稳定性。

示例

在每一层的输出经过残差连接后,我们会对结果进行层归一化处理,使得输出更加稳定。例如,在句子“我喜欢吃苹果”中,每一层的输出经过层归一化处理后,可以更好地进行下一层的计算。

抱个拳,送个礼

点击 ↑ 领取

防失联,进免费知识星球,直达算法金 AI 实验室

https://t.zsxq.com/ckSu3

免费知识星球,欢迎加入交流

第五阶段:实际应用与高级优化

自注意力机制的实现

基本实现步骤

  1. 输入处理:将输入文本转换为向量表示,可以使用词嵌入(word embedding)技术。
  2. 计算查询、键和值:根据输入向量,计算每个单词的查询、键和值向量。
  3. 计算注意力得分:使用查询和键向量计算注意力得分,并通过 softmax 转换成概率。
  4. 加权求和:根据注意力得分,对值向量进行加权求和,生成新的表示。
  5. 多头注意力机制:并行计算多组查询、键和值向量,并将结果拼接起来。
  6. 残差连接和层归一化:在每一层的输出后,添加残差连接并进行层归一化处理。

代码示例

以下是一个简化的自注意力机制的实现示例:

import torch
import torch.nn.functional as F

class SelfAttention(torch.nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        assert self.head_dim * heads == embed_size, "Embedding size needs to be divisible by heads"

        self.values = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = torch.nn.Linear(heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        N = query.shape[0]
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        values = values.reshape(N, value_len, self.heads, self.head_dim)
        keys = keys.reshape(N, key_len, self.heads, self.head_dim)
        queries = query.reshape(N, query_len, self.heads, self.head_dim)

        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
        if mask is not None:
            energy = energy.masked_fill(mask == 0, float("-1e20"))

        attention = torch.nn.functional.softmax(energy / (self.embed_size ** (1 / 2

)), dim=3)

        out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads * self.head_dim)
        out = self.fc_out(out)
        return out

优化技巧

使用预训练模型

在实际应用中,可以使用预训练的 Transformer 模型,如 BERT、GPT 等,这些模型已经在大规模数据上进行过训练,能够大幅提升性能。

微调(Fine-tuning)

在特定任务上对预训练模型进行微调,即在预训练模型的基础上,使用少量的任务特定数据进行训练,以适应具体的应用场景。

正则化技术

为了防止模型过拟合,可以使用正则化技术,如 Dropout、权重衰减等。

实际应用案例

自然语言处理

自注意力机制广泛应用于自然语言处理任务,如机器翻译、文本生成、情感分析等。例如,Google 的翻译系统使用 Transformer 模型进行高效的翻译。

图像处理

自注意力机制也被应用于图像处理任务,如图像分类、目标检测等。Vision Transformer(ViT)是将 Transformer 应用于图像处理的成功案例。

[ 抱个拳,总个结 ]

在第五阶段中,我们探讨了自注意力机制在实际应用中的实现步骤,提供了代码示例,并介绍了一些高级优化技巧和实际应用案例。通过这些内容,大侠可以一窥 Transformer 的核心 - 自注意力机制的实际应用和优化方法。

至此,五个阶段的学习已经完成,希望这能帮助你全面理解自注意力机制,并在实际项目中成功应用。

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵 内容仅供学习交流之用,部分素材来自网络,侵联删

[ 算法金,碎碎念 ]

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/762930.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

每日一题-验证回文串

&#x1f308;个人主页&#xff1a;羽晨同学 &#x1f4ab;个人格言:“成为自己未来的主人~” //验证回文串 #include<vector> class Solution { public:bool reverseString(char s) {return (s > a && s < z) ||(s > 0 && s < 9) ||(s…

Lesson 43 Hurry up!

Lesson 43 Hurry up! 词汇 of course 当然【口语】 经常出现在口语交际中&#xff1a; Of course not. 当然不。 同义词&#xff1a; Certainly 当然。 Certainly not. 当然不。 注意语气&#xff1a;略带挑衅。Sure. 当然。 Sure not. 当然不。 Not sure. 不一定。 kettle…

Pandas 学习笔记(一)

一、pandas简介 Pandas 是 Python 语言的一个扩展程序库&#xff0c;用于数据分析。 Pandas 名字衍生自术语 "panel data"&#xff08;面板数据&#xff09;和 "Python data analysis"&#xff08;Python 数据分析&#xff09;。 Pandas 是一个开放源码…

Python + OpenCV 酷游地址教学V鄋KWK3589

本篇文章汇整了一系列的Python OpenCV 教学&#xff0c;只要按照教学文的顺序阅读和实作&#xff0c;就可以轻松入门OpenCV&#xff0c;并透过OpenCV 实现许多影像相关的创意应用。 接下来我们来介绍OpenCV-- OpenCV 是一个跨平台的电脑视觉函式库( 模组) &#xff0c;可应用…

CesiumJS【Basic】- #042 绘制纹理线(Primitive方式)

文章目录 绘制纹理线(Primitive方式)1 目标2 代码2.1 main.ts3 资源文件绘制纹理线(Primitive方式) 1 目标 使用Primitive方式绘制纹理线 2 代码 2.1 main.ts var start = Cesium.Cartesian3

SSM泰华超市商品管理系统-计算机毕业设计源码11946

目 录 摘要 1 绪论 1.1 研究背景 1.2 研究意义 1.3论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据新增流程 3.2.2 数据删除流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分析 2.5本章小结 3 系统总体设…

一键把二次元老婆拉进现实(Stable Diffusion进阶:ControlNet LineArt模型)

大家好我是极客菌&#xff01;&#xff01;&#xff01; 操作&#xff0c;就能将二次元老婆拉进现实&#xff0c;成为你的专属女友。本文将带你深入了解ControlNet LineArt模型的使用方法&#xff0c;助你轻松实现这一梦想。 ControlNet LineArt模型是Stable Diffusion的最新…

AI大模型日报#0701:Meta发布LLM Compiler、扒一扒Sora两带头人博士论文

导读&#xff1a;AI大模型日报&#xff0c;爬虫LLM自动生成&#xff0c;一文览尽每日AI大模型要点资讯&#xff01;目前采用“文心一言”&#xff08;ERNIE-4.0-8K-latest&#xff09;生成了今日要点以及每条资讯的摘要。欢迎阅读&#xff01;《AI大模型日报》今日要点&#xf…

32.哀家要长脑子了!

1.299. 猜数字游戏 - 力扣&#xff08;LeetCode&#xff09; 公牛还是挺好数的&#xff0c;奶牛。。。妈呀&#xff0c;一朝打回解放前 抓本质抓本质&#xff0c;有多少位非公牛数可以通过重新排列转换公牛数字&#xff0c;意思就是&#xff0c;当这个数不是公牛数字时&#x…

控制器方法执行流程和 @InitBinder【Spring源码学习】

控制器方法执行流程 InitBinder 加在ControllerAdvice中 首先说明ControllerAdvice和aop没有任何关系&#xff01; 加在ControllerAdvice中只对所有控制器都生效 全局的在开始时就会保存到handlerMappingAdapter中的cache中&#xff1b; 加在Controller中 加在controller中只对…

TS---typescript的安装和tsc命令使用

什么是TS---typescript&#xff1f; &#xff08;TypeScript是Microsoft公司注册商标&#xff09; TypeScript具有类型系统&#xff0c;且是JavaScript的超集&#xff0c; 它可以编译成普通的JavaScript代码。TypeScript支持任意浏览器&#xff0c;任意环境&#xff0c;任意系…

仓库管理系统24--统计报表

原创不易&#xff0c;打字不易&#xff0c;截图不易&#xff0c;多多点赞&#xff0c;送人玫瑰&#xff0c;留有余香&#xff0c;财务自由明日实现 1、引用LiveCharts 2、创建LiveChartViewModel using GalaSoft.MvvmLight; using LiveCharts.Wpf; using LiveCharts; using Sy…

手把手搞定报名亚马逊科技认证

引言 亚马逊云科技认证考试为我们这些技术从业者提供了提升专业技能的机会。无论选择线上还是线下考试&#xff0c;每种方式都有其独特的优势和挑战。选择合适的考试方式将帮助我们更好地展示自己的技术水平。以下是我对不同考试方式的优缺点介绍&#xff0c;以及各科目的考试…

Java案例抢红包

目录 一&#xff1a;题目要求&#xff1a; 二&#xff1a;思路分析&#xff1a;&#xff08;遇见问题先想出完整的思路逻辑再去动手事半功倍&#xff09; 三&#xff1a;具体代码&#xff1a; 一&#xff1a;题目要求&#xff1a; 二&#xff1a;思路分析&#xff1a;&#x…

基于隐马尔可夫模型的股票预测【HMM】

基于机器学习方法的股票预测系列文章目录 一、基于强化学习DQN的股票预测【股票交易】 二、基于CNN的股票预测方法【卷积神经网络】 三、基于隐马尔可夫模型的股票预测【HMM】 文章目录 基于机器学习方法的股票预测系列文章目录一、HMM模型简介&#xff08;1&#xff09;前向后…

Python容器 之 列表--下标和切片

列表的切片 得到是 新的列表字符串的切片 得到是 新的字符串 如果下标 不存在会报错 list1 [1, 3.14, "hello", False] print(list1)# 获取 列表中 第一个数据 print(list1[0]) # 1# 获取列表中的最后一个数据 print(list1[-1]) # [False]# 获取中间两个数 即 3.1…

面经-数据库

1.MySQL 1.1什么是MySQL? MySQL 是⼀种关系型数据库&#xff0c;在 Java 企业级开发中⾮常常⽤&#xff0c;因为 MySQL 是开源免费的&#xff0c;并 且⽅便扩展。阿⾥巴巴数据库系统也⼤量⽤到了 MySQL &#xff0c;因此它的稳定性是有保障的。 MySQL 是开放源代码的&…

VuePress介绍

从本文开始&#xff0c;动手搭建自己的博客&#xff01;希望读者能跟着一起动手&#xff0c;这样才能真正掌握。 ‍ VuePress 是什么 VuePress 是由 Vue 作者带领团队开发的&#xff0c;非常火&#xff0c;使用的人很多&#xff1b;Vue 框架官网也是用了 VuePress 搭建的。即…

一、安全完善度等级SIL(Safety Integrity Level)介绍

目录 一、背景 二、定义 2.1 相关概念介绍如下&#xff1a; 2.2 扩展 2.3 注意事项 一、背景 在轨道交通行业中&#xff0c;安全完善度等级&#xff08;SIL&#xff0c;Safety Integrity Level&#xff09;是一个至关重要的概念&#xff0c;它用于评估安全相关系统&#x…

昇思25天学习打卡营第13天|基于MobileNetV2的垃圾分类

MobileNetv2模型原理介绍 相比于传统的卷积神经网络&#xff0c;MobileNet网络使用深度可分离卷积&#xff08;Depthwise Separable Convolution&#xff09;的思想在准确率小幅度降低的前提下&#xff0c;大大减小了模型参数与运算量。并引入宽度系数α和分辨率系数β使模型满…