昇思25天学习打卡营第6天|网络构建

网络构建

  • 概念
  • 模型
  • 模型参数

概念

神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

模型

通过继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。
代码示例:

import mindspore
from mindspore import nn, ops

# 定义Network对象
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 10, weight_init="normal", bias_init="zeros")
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

# 实例化Network对象,并查看其结构
model = Network()
print(model)
# 运行结果:
'''
Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >
'''

# 构造一个输入数据,直接调用模型,可以获得一个二维的Tensor输出,其包含每个类别的原始预测值
X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits
# 运行结果(每次运行会有差异):
'''
Tensor(shape=[1, 10], dtype=Float32, value=
[[-4.65525780e-04,  6.57478347e-03, -6.96604839e-04 ... -3.72665562e-03,  4.10947762e-03,  1.58382324e-03]])
'''

# 通过一个nn.Softmax层实例来获得预测概率
pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")
# 运行结果(每次运行会有差异):
# Predicted class: [1]

相关神经网络模型的API介绍:

  • nn.Flatten:沿着从 start_dim 到 end_dim 的维度,对输入Tensor进行展平。
  • nn.SequentialCell:构造Cell顺序容器。
  • nn.Dense:全连接层。
  • nn.ReLU:非线性激活函数层。逐元素计算ReLU(Rectified Linear Unit activation function)修正线性单元激活函数。
  • nn.Softmax:非线性激活函数层。逐元素计算Softmax激活函数,它是二分类函数 mindspore.nn.Sigmoid 在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。

模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。
代码示例:

print(f"Model structure: {model}\n\n")

for name, param in model.parameters_and_names():
    print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

截图时间
截图时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/762820.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

入选顶会ICML,清华AIR等联合发布蛋白质语言模型ESM-AA,超越传统SOTA

作为细胞内无数生化反应的驱动力&#xff0c;蛋白质在细胞微观世界中扮演着建筑师和工程师的角色&#xff0c;不仅催化着生命活动&#xff0c;更是构筑、维系生物体形态与功能的基础构件。正是蛋白质之间的互动、协同作用&#xff0c;支撑起了生命的宏伟蓝图。 然而&#xff0…

RK3568驱动指南|第十五篇 I2C-第166章 初步认识I2C

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…

无线物联网练习题

文章目录 选择填空简答大题 选择 不属于物联网感知技术的是(A) A:ZigBee B:红外传感器 C:FRID D:传感器 ZigBee是一种无线通信技术&#xff0c;虽然它常用于物联网中作为设备之间的通信手段&#xff0c;但它本身并不是一种感知技术 关于物联网于与互联网的区别的描述&#xff…

在线疫苗预约小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;工作人员管理&#xff0c;管理员管理&#xff0c;用户管理&#xff0c;疫苗管理&#xff0c;论坛管理&#xff0c;公告管理 微信端账号功能包括&#xff1a;系统首页&#xff0c;公告&#xff0c;疫苗…

机器人控制系列教程之并联机器人简介

背景 根据其构件的连接是否构成闭环形式&#xff0c;机器人可分为串联机器人和并联机器人两种。对于串联机器人&#xff0c;其所有的构件以串联的结构形式连接起来&#xff0c;在空间组成一种开环结构&#xff0c;因而具有工作空间大&#xff0c;灵活性好等优点&#xff0c;但…

MySQL之高可用性和应用层优化(一)

高可用性 故障转移和故障恢复 在应用中处理故障转移 有时候让应用来处理故障转移会更加简单或者更加灵活。例如&#xff0c;如果应用遇到一个错误&#xff0c;这个错误外部观察者正常情况下是无法察觉的&#xff0c;例如关于数据库损坏的错误日志信息&#xff0c;那么应用可…

C++算法学习心得八.动态规划算法(6)

1.最长递增子序列&#xff08;300题&#xff09; 题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&…

Kaggle竞赛——房价预测

目录 1. 特征分析1.1 数据集导入1.2 统计缺失值1.3 可视化缺失值1.4 缺失值相关性分析1.5 训练集和测试集缺失数据对比1.6 统计特征的数据类型1.7 数值型特征分布直方图1.8 数值型特征与房价的线性关系1.9 非数值型特征的分布直方图1.10 非数值型特征箱线图1.11 数值型特征填充…

代码随想录算法训练营第55天(py)| 单调栈 | 42. 接雨水*、84.柱状图中最大的矩形

42. 接雨水* 力扣链接 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 思路1 暴力 按列来计算。每一列雨水的高度&#xff0c;取决于&#xff0c;该列 左侧最高的柱子和右侧最高的柱子中&#xff0c;…

WMS、ERP、MES之间的关系

WMS&#xff08;仓库管理系统&#xff09;、ERP&#xff08;企业资源计划&#xff09;、MES&#xff08;制造执行系统&#xff09;是企业管理和运作中常见的三种系统&#xff0c;它们在不同的层面上发挥作用&#xff0c;但之间又有紧密的联系。三者之间的区别如下&#xff1a; …

【哈哈大一上学的全忘了,重开!!】STM32从零入门物联网开发

本笔记资料来源 &#xff1a;STM32物联网入门30步&#xff1d;单片机物联网入门教程 WIFI连接阿里云物联网CubeMXHAL库蓝牙ESP8266杜洋主讲_哔哩哔哩_bilibili IOT&#xff1a;Internet of things 学习目标&#xff1a; 1.掌握洋桃IoT开发板的各功能以及驱动与基本应用 2.掌…

【C++11:右值引用,列表初始化】

统一列表初始化&#xff1a; 构造函数的函数名与函数体之间增加一个列表&#xff0c;用于对成员初始化 在实例化对象时&#xff0c;支持单/多参数的隐式转化&#xff0c;同时也可以省略符号&#xff0c;让代码更简洁 右值的引用 左值&#xff1a; 左值与右值的重要区别就是能…

tkinter显示图片

tkinter显示图片 效果代码解析打开和显示图像 代码 效果 代码解析 打开和显示图像 def open_image():file_path filedialog.askopenfilename(title"选择图片", filetypes(("PNG文件", "*.png"), ("JPEG文件", "*.jpg;*.jpeg&q…

专题五:Spring源码之初始化容器上下文

上一篇我们通过如下一段基础代码作为切入点&#xff0c;最终找到核心的处理是refresh方法&#xff0c;从今天开始正式进入refresh方法的解读。 public class Main {public static void main(String[] args) {ApplicationContext context new ClassPathXmlApplicationContext(…

2.3章节Python中的数值类型

1.整型数值 2.浮点型数值 3.复数   Python中的数值类型清晰且丰富&#xff0c;主要分为以下几种类型&#xff0c;每种类型都有其特定的用途和特性。 一、整型数值 1.定义&#xff1a;整数类型用于表示整数值&#xff0c;如1、-5、100等。 2.特点&#xff1a; Python 3中的…

面试题-Spring家族与SpringIOC

1.spring家族的介绍 Spring简单图&#xff1a; 2.IOC原理 IOC就是原先代码里需要开发者实现对象的创建和关系依赖&#xff0c;反转交给SpringIOC容器管理对象的生命周期和对象之间的依赖关系。 依赖注入的方式&#xff1a; Setter&#xff1a;实现特定属性的public sette…

RedHat9 | podman容器-续集

一、管理容器存储和网络资源 使用容器来运行简单的进程&#xff0c;然后退出。可以配置容连续运行特定服务&#xff0c;如数据库服务。如果持续运行服务&#xff0c;需要向容器添加更多的资源&#xff0c;如持久存储或对其他网络的访问权限。 针对企业容器平台上的大型部署&a…

数据资产安全策略的定制化之道:深入了解各企业独特需求,量身打造个性化的数据资产保护方案,确保数据安全无虞,助力企业稳健发展

目录 一、引言 二、企业数据资产安全现状分析 &#xff08;一&#xff09;数据安全风险多样化 &#xff08;二&#xff09;传统安全措施难以满足需求 &#xff08;三&#xff09;企业数据资产安全意识亟待提高 三、定制化数据资产安全策略的重要性 &#xff08;一&#…

SuperMap GIS基础产品FAQ集锦(20240701)

一、SuperMap iDesktopX 问题1&#xff1a;对于数据提供方提供的osgb格式的数据&#xff0c;如何只让他生成一个s3mb文件呢&#xff1f;我用倾斜入库的方式会生成好多个s3mb缓存文件 11.1.1 【解决办法】不能控制入库后只生成一个s3mb文件&#xff1b;可以在倾斜入库的时候设…

永磁同步电机离线参数识别

引言 永磁同步电机&#xff08;PMSM&#xff09;因其结构简单、功率密度高、转矩惯量比大和效率高等优点&#xff0c;在工业生产、航空航天和新能源交通等领域得到了广泛应用。然而&#xff0c;传统的参数辨识方法依赖位置传感器&#xff0c;这不仅增加了硬件成本&#xff0c;…