论文解读:【CVPR2024】DUSt3R: Geometric 3D Vision Made Easy

论文“”https://openaccess.thecvf.com/content/CVPR2024/papers/Wang_DUSt3R_Geometric_3D_Vision_Made_Easy_CVPR_2024_paper.pdf 

代码:GitHub - naver/dust3r: DUSt3R: Geometric 3D Vision Made Easy


            DUSt3R是一种旨在简化几何3D视觉任务的新框架。作者着重于使3D重建过程更加易于使用和高效。该框架利用深度学习和几何处理的最新进展,提高了准确性并降低了计算复杂性。 

1 摘要

        本文提出了DUSt3R,一种无需相机校准或视点位置信息即可处理任意图像集合的密集、无约束立体3D重建的全新范式。我们将成对重建问题视为点图的回归,放宽了传统投影相机模型的硬约束。这种方法统一了单目和双目重建案例。

        在提供多于两张图像的情况下,我们进一步提出了一种简单但有效的全局对齐策略,将所有成对点图表达在一个共同的参考框架中。我们基于标准Transformer编码器和解码器的网络架构,利用强大的预训练模型。       

        我们的方法直接提供了场景的3D模型以及深度信息,并且可以从中无缝地恢复像素匹配、焦距、相对和绝对相机参数。在单目和多视图深度估计以及相对姿态估计方面的广泛实验展示了DUSt3R如何有效地统一各种3D视觉任务,创造新的性能记录。总而言之,DUSt3R使许多几何3D视觉任务变得简单。

 

图1展示了DUSt3R的工作流程和重建效果。

  • 上半部分:DUSt3R以一组不受约束的图像为输入,输出点图(pointmaps),从这些点图可以直接推导出各种几何量。

  • 下半部分:展示了DUSt3R在没有输入相机位姿或内参的情况下进行的一致3D重建。从左到右依次是输入图像、彩色点云、带有阴影的渲染。右上角的图示例展示了DUSt3R在没有视觉重叠的情况下也能进行场景重建。

2 主要贡献

  1. 简化的流程:DUSt3R将传统的多步骤3D视觉流程简化为一个更直接的过程。这种简化有助于减少错误并提高可用性。
  2. 鲁棒性:该框架在各种数据集和场景中表现出鲁棒性,包括不同的光照条件和遮挡情况。
  3. 高效性:通过优化算法组件和实现方式,DUSt3R在不牺牲准确性的情况下,实现了显著的计算效率提升。

3 核心算法: 

         DUSt3R算法结合了现代深度学习技术和传统几何方法,通过高效的点云生成和三维重建技术,提供高精度和高鲁棒性的三维重建结果。 

4  DUSt3R网络的架构及其主要组件

图2展示了DUSt3R网络的架构及其主要组件。这张图形象地说明了网络如何处理输入的两张RGB图像(I1和I2),并生成对应的点云图(Pointmap)和置信度图(Confidence Map)。

网络架构
  1. 输入图像

    输入是两张RGB图像,分别表示为I1和I2。I1表示由第一个相机拍摄的图像,I2表示由第二个相机拍摄的图像。

  2. ViT编码器(ViT Encoder)

    输入图像I1和I2首先经过一个共享权重的ViT编码器进行特征提取。ViT编码器是一种基于视觉Transformer(ViT)的模型,用于将图像转化为Token表示(Token Representation)。编码后的特征表示分别为F1和F2。

  3. Patchify

    编码器输出的Token表示F1和F2会被划分成小块(Patchify),每个块表示图像的一部分。

  4. Transformer解码器(Transformer Decoder)

    经过Patchify处理后的特征表示F1和F2分别输入到两个Transformer解码器中,这两个解码器通过交叉注意力机制不断交换信息。交叉注意力机制允许解码器在解码过程中综合两张图像的信息,从而提高点云图的精度。

  5. 回归头(Regression Head)

    Transformer解码器的输出结果传递给两个回归头,分别对应输入的两张图像。回归头负责生成最终的点云图(X1,1和X2,1)和置信度图(C1,1和C2,1)。

  6. 输出

    最终输出的点云图(X1,1和X2,1)和置信度图(C1,1和C2,1)都以第一张图像(I1)的坐标系为基准。这种设计简化了后续的处理步骤,使得点云图可以直接在同一坐标系下进行操作和分析。

训练过程
  • 损失函数
    • 网络使用简单的回归损失函数(公式4)进行训练。损失函数基于预测的点云图和真实点云图之间的欧几里得距离进行计算。
    • 为了应对尺度模糊性,网络对预测和真实的点云图进行归一化处理,通过计算所有有效点到原点的平均距离来确定缩放因子。
    • 网络还会学习为每个像素预测一个置信度分数,这个置信度分数表示网络对该像素预测的可靠程度。最终的训练目标是置信度加权的回归损失。

5 实验评估

5.1 无地图视觉定位

        数据集:使用了Map-free relocalization benchmark,这是一项非常具有挑战性的测试,其中目标是在没有地图的情况下,仅凭一张参考图像确定相机在公制空间中的位置。测试集包括65个验证场景和130个测试场景。每个场景中,每帧视频剪辑的姿势必须相对于单个参考图像独立估计。

        协议:评价标准包括绝对相机姿态准确性(以5°和25厘米为阈值)和虚拟对应重投影误差(VCRE),后者测量虚拟3D点根据真实和估计相机姿态重投影误差的平均欧氏距离。

结果:DUSt3R在测试集上的表现优于所有现有方法,有时优势显著,定位误差小于1米。

5.2 恢复未知相机内参

        数据集:使用了BLUBB数据集来评估DUSt3R在没有内参信息的情况下恢复相机内参的能力。数据集提供了一系列场景,每个场景都具有已知的地面真实相机内参和3D点云。

        协议:评价标准包括相机内参的准确性和重建的3D点云的完整性。DUSt3R通过估计场景的相对姿态和尺度,结合已知的地面真实3D点云来恢复内参。

        结果:在没有先验相机信息的情况下,DUSt3R达到了平均2.7毫米的准确性,0.8毫米的完整性,总体平均距离为1.7毫米。这个精度水平在实际应用中非常有用,考虑到其即插即用的特性。

5.3 总结

        DUSt3R在多个3D视觉任务中展示了其卓越的性能,无需对特定下游任务进行微调。该模型在零样本设置下取得了令人印象深刻的结果,特别是在无地图视觉定位和未知相机内参恢复任务中表现出色。实验结果表明,DUSt3R不仅适用于3D重建任务,还能有效处理各种3D视觉任务,展示了其广泛的应用潜力和实际使用价值。

5.4 可视化

        论文包含了大量可视化内容,有助于理解概念和结果。这些包括流程图、架构细节和重建3D模型的视觉比较。

图3展示了两个场景的重建例子,这两个场景在训练期间从未见过。图像从左到右依次是:RGB图像、深度图、置信度图和重建结果。以下是对每部分的详细解析:

  1. RGB图像:

    • 这是输入的彩色图像,为网络提供了丰富的纹理和颜色信息,帮助进行3D重建。
  2. 深度图:

    • 这是网络预测的深度图,表示场景中每个像素到相机的距离。深度值越大,像素点离相机越远。深度图为重建提供了基础的几何信息。
  3. 置信度图:

    • 置信度图表示网络对每个像素深度预测的信心。高置信度区域通常表示预测较为准确的区域,而低置信度区域可能包含难以预测的部分,如天空、透明物体或反光表面。
  4. 重建结果:

    • 左边的场景显示了直接从网络f(I1, I2)输出的原始结果。可以看到,网络已经能够较为准确地重建场景的3D形状。
    • 右边的场景显示了经过全局对齐(第3.4节)的结果。全局对齐步骤进一步优化了重建结果,使其更加精确和一致。

通过展示这些结果,图3强调了DUSt3R方法在不同场景中的鲁棒性和有效性,尤其是其在未见过的场景中的表现。此外,置信度图的引入使得网络能够在不确定区域进行自适应调整,提高了重建的整体质量。

结论

        DUSt3R在几何3D视觉领域提供了显著的进步。其简化流程、结合鲁棒性和高效性,使其成为计算机视觉研究人员和从业者的宝贵工具。详细的实验评估和全面的可视化进一步加强了论文的贡献。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/758637.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java高级重点知识点-17-异常

文章目录 异常异常处理自定义异常 异常 指的是程序在执行过程中,出现的非正常的情况,最终会导致JVM的非正常停止。Java处 理异常的方式是中断处理。 异常体系 异常的根类是 java.lang.Throwable,,其下有两个子类:ja…

实验4 图像空间滤波

1. 实验目的 ①掌握图像空间滤波的主要原理与方法; ②掌握图像边缘提取的主要原理和方法; ③了解空间滤波在图像处理和机器学习中的应用。 2. 实验内容 ①调用 Matlab / Python OpenCV中的函数,实现均值滤波、高斯滤波、中值滤波等。 ②调…

java基于ssm+jsp 多用户博客个人网站

1管理员功能模块 管理员登录,管理员通过输入用户名、密码等信息进行系统登录,如图1所示。 图1管理员登录界面图 管理员登录进入个人网站可以查看;个人中心、博文类型管理、学生博客管理、学生管理、论坛信息、管理员管理、我的收藏管理、留…

Linux多进程和多线程(一)-进程的概念和创建

进程 进程的概念进程的特点如下进程和程序的区别LINUX进程管理 getpid()getppid() 进程的地址空间虚拟地址和物理地址进程状态管理进程相关命令 ps toppstreekill 进程的创建 并发和并行fork() 父子进程执行不同的任务创建多个进程 进程的退出 exit()和_exit() exit()函数让当…

微短剧市场还能火多久?短剧小程序是否有必要搭建?,现在入场到底晚不晚?

我公司在2019年开始都是做软件开发的,从2022到现在(2024)特别深有体会,在2022年的时候我公司还是在全部做外包项目,一年大概遇到了10多个咨询短剧领域的软件定制,但是当时我只是以为是一个影视播放的程序&a…

7.优化算法之分治-快排归并

0.分治 分而治之 1.颜色分类 75. 颜色分类 - 力扣(LeetCode) 给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。 我们使用整数…

推动多模态智能模型发展:大型视觉语言模型综合多模态评测基准

随着人工智能技术的飞速发展,大型视觉语言模型(LVLMs)在多模态应用领域取得了显著进展。然而,现有的多模态评估基准测试在跟踪LVLMs发展方面存在不足。为了填补这一空白,本文介绍了MMT-Bench,这是一个全面的…

Django 模版继承

1&#xff0c;设计母版页 Test/templates/6/base.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><!-- 修正了模板标签的全角字符问题 -->{% block title %}<title>这个是母版页</title>{…

leetCode.93. 复原 IP 地址

leetCode.93. 复原 IP 地址 题目思路&#xff1a; 代码 // 前导零的判断方法&#xff1a;如果第一个数是0&#xff0c;且第二个数还有数据&#xff0c;那就是前导0&#xff0c;要排除的 // 注意跟单个 0 区分开 class Solution { public:vector<string> res;vector<…

Opencv+python模板匹配

我们经常玩匹配图像或者找相似&#xff0c;opencv可以很好实现这个简单的小功能。 模板是被查找目标的图像&#xff0c;查找模板在原始图像中的哪个位置的过程就叫模板匹配。OpenCV提供的matchTemplate()方法就是模板匹配方法&#xff0c;其语法如下&#xff1a; result cv2.…

【活动感想】筑梦之旅·AI共创工坊 workshop 会议回顾

目录 &#x1f30a;1. 会议详情 &#x1f30a;2. 会议回顾 &#x1f30d;2.1 主持人开场 &#x1f30d;2.2 元甲-小当家 AI 驱动的创意儿童营养早餐料理机&今天吃什么App &#x1f30d;2.3 Steven- A l 心理疗愈认知 &#x1f30d;2.4 伯棠-诸子百家(xExperts)-多智能…

私有部署Twikoo评论系统

原文&#xff1a;https://blog.c12th.cn/archives/12.html 前言 以前用 MongoDB Vercel 搭建 Twikoo 老是有点小问题&#xff0c;所以就放弃了。无意中看到可以用 docker 来搭建&#xff0c;正好有台服务器可以尝试下。 私有部署 Twikoo 版本要求 1.6.0 或以上 &#xff0c; …

AMD Anti-Lag 2抗延迟技术落地 CS2首发、延迟缩短95%

AMD发布了全新重磅驱动程序Adrenalin 24.6.1版本&#xff0c;包括首发落地Anti-Lag 2抗延迟技术、优化支持新游戏、升级支持HYPR-Tune、支持新操作系统、优化AI加速与开发、扩展支持Agility SDK、修复已知Bug&#xff0c;等等。 一、Anti-Lag 2 今年5月份刚宣布&#xff0c;重…

【计算机毕业设计】基于Springboot的智能物流管理系统【源码+lw+部署文档】

包含论文源码的压缩包较大&#xff0c;请私信或者加我的绿色小软件获取 免责声明&#xff1a;资料部分来源于合法的互联网渠道收集和整理&#xff0c;部分自己学习积累成果&#xff0c;供大家学习参考与交流。收取的费用仅用于收集和整理资料耗费时间的酬劳。 本人尊重原创作者…

信号与系统-实验6-离散时间系统的 Z 域分析

一、实验目的 1、掌握 z 变换及其性质&#xff1b;了解常用序列的 z 变换、逆 z 变换&#xff1b; 2、掌握利用 MATLAB 的符号运算实现 z 变换&#xff1b; 3、掌握利用 MATLAB 绘制离散系统零、极点图的方法&#xff1b; 4、掌握利用 MATLAB 分析离散系统零、极点的方法&a…

kicad第三方插件安装问题

在使用KICAD时想安装扩展内容&#xff0c;但是遇到下载失败&#xff0c;因为SSL connect error。 因为是公司网络&#xff0c;我也不是很懂&#xff0c;只能另寻他法。找到如下方法可以曲线救国。 第三方插件包目录 打开存放第三方插件存放目录&#xff0c;用于存放下载插件包…

vue3+vite+nodejs,通过接口的形式请求后端打包(可打包全部或指定打包组件)

项目地址https://gitee.com/sybb011016/test_build 打包通过按钮的形式请求接口&#xff0c;让后端进行打包&#xff0c;后端使用express-generator搭建模版。前端项目就在npm init vuelatest基础上添加了路由 如果只想打包AboutView组件&#xff0c;首先修改后端接口。 //打…

Linux如何安装openjdk1.8

文章目录 Centosyum安装jdk和JRE配置全局环境变量验证ubuntu使用APT(适用于Ubuntu 16.04及以上版本)使用PPA(可选,适用于需要特定版本或旧版Ubuntu)Centos yum安装jdk和JRE yum install java-1.8.0-openjdk-devel.x86_64 安装后的目录 配置全局环境变量 vim /etc/pr…

运营商、银行、国企等单位开发岗24届Offer薪资与福利汇总

本文介绍24届校园招聘中&#xff0c;地理信息科学&#xff08;GIS&#xff09;专业硕士研究生所得Offer的整体薪资情况、福利待遇等。 在2024届秋招与春招中&#xff0c;我累计投递了170余个单位&#xff0c;获得17个Offer&#xff1b;平均每投递10个简历才能获得1个Offer。说句…

2024年6月29日 每周新增游戏

图吧工具箱: 全名图拉丁吧硬件检测工具箱,是开源、免费、绿色、纯净的硬件检测工具合集,专为图钉及所有DIY爱好者制作,包含常用硬件测试和检测工具,月工JS必备! iGuzheng爱古筝iguzheng古筝是一款可以在线模拟古筝练习的软件&#xff0c;用户可以直接在手机上练习古筝&#xff…