R语言生存分析(机器学习)(1)——GBM(梯度提升机)

GBM是一种集成学习算法,它结合了多个弱学习器(通常是决策树)来构建一个强大的预测模型。GBM使用“Boosting”的技术来训练弱学习器,这种技术是一个迭代的过程,每一轮都会关注之前轮次中预测效果较差的样本,以便更专注地对它们进行建模。这有助于逐步减少整体预测误差。

#1 清空
rm(list = ls())
gc()
#2 导入包
library("survival")
library("gbm")
help(package="gbm")
#3 拆分训练集和测试集
data<-lung
set.seed(123)
train <- sample(1:nrow(data), round(nrow(data) * 0.70))
train <- data[train, ]
test <- data[-train, ]
#4 建立模型
set.seed(123)
gbm_model <- gbm(Surv(time, status) ~ .,#建模
             distribution = "coxph",#分布
             data = train,#数据
             n.trees = 5000,#树数量
             shrinkage = 0.1,#学习率或步长减少
             interaction.depth = 5,#每棵树的最大深度
             n.minobsinnode = 10,#最小观测次数在树的终末节点
             cv.folds = 10#交叉验证次数
)
plot(gbm_model)#通过“积分”其他变量,绘制所选变量的边际效应。
summary(gbm_model)#绘图,从高到低显示因素的相对重要性

 

#5 预测
best.iter <- gbm.perf(gbm_model, plot.it = TRUE, method = "cv")
pred_train <- predict(gbm_model, train, n.trees = best.iter)
pred_test <- predict(gbm_model, test, n.trees = best.iter)
#6 模型评价
#计算ROC
library(survivalROC)
roc_area <- survivalROC(Stime=train$time,
                        status=train$status,
                        marker =pred_train,
                        predict.time=100,
                        method="KM")
# 计算C-index
Hmisc::rcorr.cens(-pred_train, Surv(train$time, train$status))
Hmisc::rcorr.cens(-pred_test, Surv(test$time, test$status))
#7 计算生存概率
# 计算累积
CH<- basehaz.gbm(train$time, train$status, pred_train, 
                   t.eval = 300, cumulative = TRUE)
exp(-exp(pred_test)*CH)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/75525.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

opencv进阶01-直方图的应用及示例cv2.calcHist()

直方图是什么&#xff1f; 直方图是一种图形表示方法&#xff0c;用于显示数据中各个数值或数值范围的分布情况。它将数据划分为一系列的区间&#xff08;也称为“箱子”或“bin”&#xff09;&#xff0c;然后统计每个区间中数据出现的频次&#xff08;或频率&#xff09;。直…

Floyd(多源汇最短路)

Floyd求最短路 给定一个 n 个点 m 条边的有向图&#xff0c;图中可能存在重边和自环&#xff0c;边权可能为负数。 再给定 k 个询问&#xff0c;每个询问包含两个整数 x 和 y&#xff0c;表示查询从点 x 到点 y 的最短距离&#xff0c;如果路径不存在&#xff0c;则输出 impo…

rabbitmq的持久化

目录 队列实现持久化 如何删除队列​编辑 消息实现持久化 不公平分发 如何保障当 RabbitMQ 服务停掉以后消息生产者发送过来的消息不丢失。默认情况下 RabbitMQ 退出或由于某种原因崩溃时&#xff0c;它忽视队列和消息&#xff0c;除非告知它不要这样做。确保消息不会丢失需…

桂林小程序https证书

现在很多APP都相继推出了小程序&#xff0c;比如微信小程序、百度小程序等&#xff0c;这些小程序的功能也越来越复杂&#xff0c;不可避免的和网站一样会传输数据&#xff0c;因此小程序想要上线就要保证信息传输的安全性&#xff0c;也就是说各种类型的小程序也需要部署https…

SAP MM学习笔记24-以评估收货(评价)和非评估收货(非评价)

SAP 中 有评价入库&#xff08;评估收货&#xff09;和非评价入库&#xff08;非评估收货&#xff09;两种入库方式。 一般来说在库品目会采用评价入库&#xff0c;而消费品目&#xff0c;会采用非评价入库。 其实评价入库&#xff0c;非评价入库对外都无所谓的&#xff0c;人…

计算机竞赛 python+opencv+机器学习车牌识别

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于机器学习的车牌识别系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;4分工作量&#xff1a;4分创新点&#xff1a;3分 该项目较为新颖&#xff0c;适…

HTTP 协议的基本格式和 fiddler 的用法

目录 一. HTTP 协议 1. HTTP协议是什么 2. HTTP协议的基本格式 HTTP请求 首行 GET和POST方法&#xff1a; 其他方法 经典面试题&#xff1a; URL Header(请求报头)部分 空行 ​HTTP响应 状态码总结: 二、Fiddler的用法 1.Fidder的安装 2.Fidder的使用 一. HTTP 协议 1. H…

日常BUG——普通页面跳转tabbar页面报错

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;日常BUG、BUG、问题分析☀️每日 一言 &#xff1a;存在错误说明你在进步&#xff01; 一、问题描述 微信小程序页面跳转的时候出现下面的问题&#xff1a; wx.redirectTo({url: /pages/index/i…

java 使用log4j显示到界面和文件 并格式化

1.下载log4j jar包https://dlcdn.apache.org/logging/log4j/2.20.0/apache-log4j-2.20.0-bin.zip 2. 我只要到核心包 &#xff0c;看需要 sources是源码包&#xff0c;可以看到说明。在IDEA里先加入class jar后&#xff0c;再双击这个class jar包或或右键选Navigate ,Add ,…

【贪心】CF1779 D

不会1700 Problem - 1779D - Codeforces 题意&#xff1a; 思路&#xff1a; 首先手推样例&#xff0c;可以发现一些零碎的性质&#xff1a; 然后考虑如何去计算贡献 难点在于&#xff0c;当一个区间的两端是区间max时&#xff0c;怎么去计算贡献 事实上&#xff0c;只需要…

【HttpRunnerManager】搭建接口自动化测试平台操作流程

一、需要准备的知识点 1. linux: 安装 python3、nginx 安装和配置、mysql 安装和配置 2. python: django 配置、uwsgi 配置 二、我搭建的环境 1. Centos7 &#xff08;配置 rabbitmq、mysql 、Supervisord&#xff09; 2. python 3.6.8 &#xff08;配置 django、uwsgi&…

kubernetes二进制部署2之 CNI 网络组件部署

CNI 网络组件部署 一&#xff1a;K8S提供三大接口1容器运行时接口CRI2云原生网络接口CNI3云原生存储接口CSI 部署 flannelK8S 中 Pod 网络通信&#xff1a;Overlay Network&#xff1a;VXLAN&#xff1a;Flannel:Flannel udp 模式的工作原理&#xff1a;ETCD 之 Flannel 提供说…

麒麟arm架构 编译安装qt5.14.2

1、先在官网下载qt源码&#xff1a; https://download.qt.io/archive/qt/5.14/5.14.2/single/[qt源码下载地址] 2、解压编译 使用tar -xvf qt-everywhere-src-5.14.2.tar.xz 解压压缩包 cd qt-everywhere-src-5.14.2 执行 ./configure --prefix/usr/local/qt.5.14.2 make -…

计算机竞赛 python 爬虫与协同过滤的新闻推荐系统

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python 爬虫与协同过滤的新闻推荐系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&…

Cpp学习——string模拟实现

目录 一&#xff0c;string的成员变量 二&#xff0c;string的各项功能函数 1.构造函数 2.析构函数 3.扩容函数 4.插入与删除数据的函数 5.运算符重载 6.打印显示函数 7&#xff0c;拷贝构造 8.find函数 一&#xff0c;string的成员变量 在模拟实现string之前&#xff…

云原生 AI 工程化实践之 FasterTransformer 加速 LLM 推理

作者&#xff1a;颜廷帅&#xff08;瀚廷&#xff09; 01 背景 OpenAI 在 3 月 15 日发布了备受瞩目的 GPT4&#xff0c;它在司法考试和程序编程领域的惊人表现让大家对大语言模型的热情达到了顶点。人们纷纷议论我们是否已经跨入通用人工智能的时代。与此同时&#xff0c;基…

二自由度机械臂的gazebo仿真

一、创建ros软件包 #1、创建工作空间 mkdir 2d_robot_ws cd 2d_robot_ws mkdir src cd src catkin_init_workspace #2、编译工作空间 cd .. catkin_make #3、创建软件包 catkin_create_pkg 2d_robot std_msgs rospy roscpp二、创建模型文件 1、编写urdf模型文件 在2d_robot_…

LLMs大模型plugin开发实战

一、概述 ChatGPT是通用语言大模型&#xff0c;如果用户想要在与大模型进行交互时能够使用到企业私有的数据&#xff0c;那么可以通过开发plugin&#xff08;插件&#xff09;的方式来实现&#xff0c;另外GPT3.5模型的训练数据是截止到2021年9月&#xff0c;如果想让模型能够…

mysql-5.5.62-win32安装与使用

1.为啥是这个版本而不是当前最新的8.0&#xff1f; 因为我要用32位。目前mysql支持win32的版本最新只到5.7.33。 首先&#xff0c;到官网MySQL :: MySQL Downloads 然后选 选一个自己喜欢的版本就好。我这里是如标题版本。下载32位的zip。然后回来解压。 完了创建系统环境变…

29 深度玻尔兹曼机

文章目录 29 深度玻尔兹曼机29.1 背景介绍29.2 DBM的叠加方式 29 深度玻尔兹曼机 29.1 背景介绍 过去在解决BM问题的时候&#xff0c;提出过多种模型&#xff1a;RBM、SBN、DBN 其中RBM是一种有限制条件的&#xff0c;简化的BM&#xff0c;限制了隐藏层和观测层内部都没有连…