Redis主从复制、哨兵以及Cluster集群

1.Redis高可用


在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。
在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和Cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。

持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
Cluster集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案

2.Redis主从复制

●主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
●哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
●集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。


---------------------- Redis 主从复制 ----------------------------------------
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。


2.1 主从复制的作用


●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。


2.2 主从复制流程


1)首次同步:当从节点要进行主从复制时,它会发送一个SYNC命令给主节点。主节点收到SYNC命令后,会执行BGSAVE命令来生成RDB快照文件,并在生成期间使用缓冲区记录所有写操作。
2)快照传输:当主节点完成BGSAVE命令并且快照文件准备好后,将快照文件传输给从节点。主节点将快照文件发送给从节点,并且在发送过程中,主节点会继续将新的写操作缓冲到内存中。
3)追赶复制:当从节点收到快照文件后,会加载快照文件并应用到自己的数据集中。一旦快照文件被加载,从节点会向主节点发送一个PSYNC命令,以便获取缓冲区中未发送的写操作。
4)增量复制:主节点收到PSYNC命令后,会将缓冲区中未发送的写操作发送给从节点,从节点会执行这些写操作,保证与主节点的数据一致性。此时,从节点已经追赶上了主节点的状态。
5)同步:从节点会继续监听主节点的命令,并及时执行主节点的写操作,以保持与主节点的数据同步。主节点会定期将自己的操作发送给从节点,以便从节点保持最新的数据状态.

注意:当slave首次同步或者宕机后恢复时,会全盘加载,以追赶上大部队,即全量复制

2.3 搭建Redis 主从复制

Master节点:192.168.80.10  centos7-4
Slave1节点:192.168.80.11  centos7-5
Slave2节点:192.168.80.12  centos7-6

---------------------- 搭建Redis 主从复制 ----------------------------------------
Master节点:192.168.80.15  centos7-4
Slave1节点:192.168.80.50  centos7-5
Slave2节点:192.168.80.60  centos7-6


2.3.1 安装部署Redis

//环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

(1) 修改内核参数

vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048

sysctl -p


(2)安装redis

yum install -y gcc gcc-c++ make

tar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make -j 2
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

 (3)创建redis工作目录

mkdir /usr/local/redis/{conf,logs,data}

cp /opt/redis-7.0.13/redis.conf /usr/local/redis/conf/

useradd -M -s /sbin/nologin redis  #创建nologin用户
chown -R redis.redis /usr/local/redis/ 

 (4)环境变量

vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin        #增加一行

source /etc/profile


 (4)定义systemd服务管理脚本

vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target

[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/logs/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target


(4)修改 Redis 配置文件(Master节点操作)

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0                                    #87行,修改监听地址为0.0.0.0
protected-mode no                                #111行,将本机访问保护模式设置no
port 6379                                        #138行,Redis默认的监听6379端口
daemonize yes                                    #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/logs/redis_6379.pid        #341行,指定 PID 文件
logfile "/usr/local/redis/logs/redis_6379.log"    #354行,指定日志文件
dir /usr/local/redis/data                        #504行,指定持久化文件所在目录
#requirepass abc123                                #1037行,可选,设置redis密码
appendonly yes                                    #1380行,开启AOF
systemctl restart redis-server.service



(5)修改 Redis 配置文件(Slave节点操作)

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0                                    #87行,修改监听地址为0.0.0.0
protected-mode no                                #111行,将本机访问保护模式设置no
port 6379                                        #138行,Redis默认的监听6379端口
daemonize yes                                    #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/logs/redis_6379.pid        #341行,指定 PID 文件
logfile "/usr/local/redis/logs/redis_6379.log"    #354行,指定日志文件
dir /usr/local/redis/data                        #504行,指定持久化文件所在目录
#requirepass abc123                                #1037行,可选,设置redis密码
appendonly yes                                    #1380行,开启AOF
replicaof 192.168.80.10 6379                    #528行,指定要同步的Master节点IP和端口
#masterauth abc123                                #535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass


systemctl restart redis-server.service


(6)验证主从效果

###在Master节点上添加数据内容
redis-cli -h 192.168.80.15 -p 6379 
keys *
set name kx
get name

###在slave节点上查看主节点添加的数据内容
redis-cli -h 192.168.80.50 -p 6379 
keys *
get name

 

 

redis-cli -h 192.168.80.15 -p 6379
 info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.80.50,port=6379,state=online,offset=420,lag=0
slave1:ip=192.168.80.60,port=6379,state=online,offset=420,lag=1

在Master节点上验证从节点:

-----验证主从效果-----

在Master节点上看日志:
tail -f /usr/local/redis/logs/redis_6379.log


 3.Redis哨兵模式

3.1 哨兵模式概述

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。


3.2 哨兵模式的作用

●监控:哨兵会不断地检查主节点和从节点是否运作正常

●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

●通知(提醒):哨兵可以将故障转移的结果发送给客户端。


哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。


#故障转移机制:
1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。


3.4 主节点的选举


1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。


哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

 3.5 搭建Redis哨兵模式

注意: 哨兵节点既可以单独部署,也可以和数据节点部署在一台服务器上,视服务器的数量而定。
在主从复制基础上进行下面的哨兵模式实验:
(1)设置Redis哨兵模式配置文件的属组以及属主(所有节点操作)

cp /opt/redis-7.0.13/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf 

(2)修改Redis哨兵模式的配置文件(所有节点操作)

vim /usr/local/redis/conf/sentinel.conf
protected-mode no                                    #6行,关闭保护模式
port 26379                                            #10行,Redis哨兵默认的监听端口
daemonize yes                                        #15行,指定sentinel为后台启动
pidfile /usr/local/redis/logs/redis-sentinel.pid        #20行,指定 PID 文件
logfile "/usr/local/redis/logs/sentinel.log"            #25行,指定日志存放路径
dir /usr/local/redis/data                            #54行,指定数据库存放路径
sentinel monitor mymaster 192.168.80.15 6379 2        #73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123                    #76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000        #114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000            #214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

###将修改好的redis的配置文件复制到另外两个从服务器
scp -r /usr/local/redis/conf/sentinel.conf 192.168.80.50:`pwd`
scp -r /usr/local/redis/conf/sentinel.conf 192.168.80.60:`pwd`

(3)启动哨兵模式

先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &


(4)查看哨兵信息

###在主从节点上执行以下命令

redis-cli -p 26379 info Sentinel

 

(5)关闭主节点进程,模拟故障切换

#查看redis-server进程号:
ps -ef | grep redis

#杀死Master节点上redis-server的进程号
kill -9 12394			#Master节点上redis-server的进程号

(6)验证故障切换结果

tail -f /usr/local/redis/logs/sentinel.log
redis-cli -p 26379 info Sentinel

###在新选举的主上执行以下命令
redis-cli -h 192.168.80.70 -p 6379 -a '123'
info replication

 

 

---------------------- Redis 群集模式 ----------------------------------------
集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点组中。节点组中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。


#集群的作用,可以归纳为两点:
(1)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

(2)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多组节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。


#Redis集群的数据分片:
Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/754436.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux 异步 I/O 框架 io_uring:基本原理、程序示例与性能压测

Linux 异步 I/O 框架 io_uring 前言Linux I/O 系统调用演进io_uring与 Linux AIO 的不同原理及核心数据结构:SQ/CQ/SQE/CQE带来的好处三种工作模式io_uring 系统调用 API 前言 io_uring 是 2019 年 Linux 5.1 内核首次引入的高性能 异步 I/O 框架,能显著…

003-GeoGebra如何无缝嵌入到PPT里

GeoGebra无缝嵌入到PPT里真是一个头疼的问题,已成功解决,这里记录一下,希望可以帮助到更多人。 注意,后续所有的文章说的PPT都是Offce Power Point, 不要拿着WPS的bug来问我哦,我已经戒WPS了(此处表示无奈&…

typescript学习回顾(四)

今天来分享下ts中的类,关于ts中的类的概念,面向对象的一种思想,以及类里面的一些属性成员,一些基础的用法,后面会有一个小练习。 类 基本概念 我的理解:类是编程语言中面向对象的一种思想,一…

人脑计算机技术与Neuroplatform:未来计算的革命性进展

引言 想象一下,你在某个清晨醒来,准备开始一天的工作,而实际上你的大脑正作为一台生物计算机的核心,处理着大量复杂的信息。这并非科幻电影的情节,而是人脑计算机技术即将带来的现实。本文将深入探讨FinalSpark公司的…

Anisble Playbook

文章目录 一、Playbook简介三种常见的数据格式Playbook特点YAML语言介绍 二、Playbook核心组件host组件remote_user组件task列表和action组件gather_factsHandlers notifyignore_errors 三、playbook命令playbook命令tags 标签 四、Playbook中的变量setup模块中的变量Playbook命…

2024年建筑八大员(资料员)考试题库,省心高效,轻松通过!

1.插入的图片无法显示,或者显示失真,正确做法是()。 A.插人图片是应选中【自动调整图片大小】 B.在下拉【菜单】中选中【按单元格式大小】插入 C.在【格式】下拉中【图片】处打钩 D.在【属性】下拉中选中【工具显示】 答案&a…

Prestashop跨境电商独立站,外贸B2C网站完整教程

Prestashop是一款来自法国专业的开源电商CMS(内容管理系统)平台,和wordpress一样比较轻量,适合中小网站。Prestashop跨境电商独立站在国内并不是很流行,不过国外是非常火的,从各大平台的Prestashop主题数量就可以看得出来。 最有…

深度解析观测云智能监控的核心设计原理

背景 在监控高度分布式的应用程序时,可能依赖于多个基于云的和本地环境中的数百个服务和基础设施组件,在识别错误、检测高延迟的原因和确定问题的根因都是比较有挑战性的。即使已经具备了强大的监控和警报系统,但是基础设施和应用程序也可能…

学校选用SOLIDWORKS教育版进行授课的理由

在当代的工程与技术教育领域,计算机辅助设计软件(CAD)已经变成了一个不可缺少的教学辅助工具。SOLIDWORKS作为一个功能齐全且用户友好的CAD软件,其教育版本在学校教学环境中受到了广泛的欢迎。本文将对学校教学中选用SOLIDWORKS版…

OCR训练和C#部署英文字符训练

PaddleOCR是一个基于飞桨开发的OCR(Optical Character Recognition,光学字符识别)系统。其技术体系包括文字检测、文字识别、文本方向检测和图像处理等模块。以下是其优点: 高精度:PaddleOCR采用深度学习算法进行训练…

台式电脑没有音响?你还可以用这 7 个软件把手机变成音响

台式电脑没有音响?你还可以用这 7 个软件把手机变成音响 怎么让手机当电脑音响 怎么让电脑连接手机的麦克风 手机怎么变电脑麦克风 1.AudioRelay 官网audiorelay加点net提供 Windows 和 Android 应用程序下载 再打开作为 Client 的 Android 端,它会自…

大型企业组网如何规划网络

大型企业组网是一个复杂的过程,它需要细致的规划和设计,以确保网络能够满足企业的业务需求,同时保证性能、安全性和可扩展性。以下是规划大型企业网络的一些关键步骤和考虑因素: 1. 需求分析 业务需求:与各个业务部门…

如何进行员工 OKR 反馈?

目标和关键结果框架是一种协作性的目标设定方法,帮助团队设定理想的目标(目标),并有具体的、可衡量的行动项目,称为关键结果。实施 OKR 为一个富有成效的、以目标为导向的环境奠定了基础,从而消除了提供反馈…

电脑开机就一直在开机界面转圈,怎么回事?

前言 前段时间小白去给一位朋友修电脑。她说这个电脑很奇怪,有时候开机很快就进入电脑界面,但有时候开机一直在那转圈,半天也不见进入。 Windows7系统的小伙伴应该也有遇到过类似的问题,就是电脑一直在Windows的logo界面&#xf…

Halcon 重叠区域 显示汉字 图像分割

一 如何填充区域之间的GAP或分割重叠区域 read_image(Image,fabrik)*区域生长法将图像分割成相同强度的区域,并将其划分成大小为行*列的矩形。 为了确定两个相邻的矩形是否属于相同的区域, *仅使用其中心点的灰度值。 如果灰度值差小于等于公差&#xff…

Java使用Graphics2D画图,画圆,矩形,透明度等实现

背景 如上图,需要使用Java生成一个图片, 并以base64编码的形式返回给前端展示。 使用Graphics2D类,来进行画图,其中需要画方框、原型、插入图标、写入文字等,同时需要设置透明度等细节点 环境:Jdk17&#…

NAS—网络附加存储

关键词:私有化存储、Nas、云盘、群晖、Tailscale、 前言 身处于互联网时代的我们,几乎每时每刻都在与计算机打交道,而软件则作为我们和计算机之间沟通的桥梁,因此可以认为软件的作用是:将计算机能力进行包装&#xf…

期货散户应该如何有效的管理仓位呢?

期货散户应该如何有效的管理仓位呢?首先,他们要意识到自己所做的决定是很重要的。其次,还要注意自己的风险承受能力。最后,要做好风险管理,以便避免出现任何问题。 1:散户如何管理仓位 散户在进行期货交易时,要想有效地管理仓位,需要遵循一…

Windwos +vs 2022 编译openssl 1.0.2 库

一 前言 先说 结论&#xff0c;编译64位报错&#xff0c;查了一圈没找到解决方案&#xff0c;最后换了32位的。 使用qt访问web接口&#xff0c;因为是https&#xff0c;没有openssl库会报错 QNetworkReply* reply qobject_cast<QNetworkReply*>(sender());if (reply){…

vivo 互联网自研代码评审 VCR 落地实践

作者&#xff1a;vivo 互联网效能平台团队- Chi Wei 本文介绍了vivo工程效能团队基于 Gitlab、Gerrit等开源工具搭建的VCR平台&#xff0c;代码评审idea插件开发及开发过程中遇到的挑战、困难&#xff0c;并分享了相应的应对策略和优化方案。 代码评审是软件质量保证一种活动&…