为什么要分库分表?

不急于上手实战 ShardingSphere 框架,先来复习下分库分表的基础概念,技术名词大多晦涩难懂,不要死记硬背理解最重要,当你捅破那层窗户纸,发现其实它也就那么回事。

什么是分库分表

分库分表是在海量数据下,由于单库、表数据量过大,导致数据库性能持续下降的问题,演变出的技术方案。

分库分表是由分库分表这两个独立概念组成的,只不过通常分库与分表的操作会同时进行,以至于我们习惯性的将它们合在一起叫做分库分表。

通过一定的规则,将原本数据量大的数据库拆分成多个单独的数据库,将原本数据量大的表拆分成若干个数据表,使得单一的库、表性能达到最优的效果(响应速度快),以此提升整体数据库性能。

为什么分库分表

单机数据库的存储能力、连接数是有限的,它自身就很容易会成为系统的瓶颈。当单表数据量在百万以里时,我们还可以通过添加从库、优化索引提升性能。

一旦数据量朝着千万以上趋势增长,再怎么优化数据库,很多操作性能仍下降严重。为了减少数据库的负担,提升数据库响应速度,缩短查询时间,这时候就需要进行分库分表。

为什么需要分库?

容量

我们给数据库实例分配的磁盘容量是固定的,数据量持续的大幅增长,用不了多久单机的容量就会承载不了这么多数据,解决办法简单粗暴,加容量!

连接数

单机的容量可以随意扩展,但数据库的连接数却是有限的,在高并发场景下多个业务同时对一个数据库操作,很容易将连接数耗尽导致 too many connections 报错,导致后续数据库无法正常访问。

可以通过 max_connections 查看 MySQL 最大连接数。

show variables like '%max_connections%'

将原本单数据库按不同业务拆分成订单库、物流库、积分库等不仅可以有效分摊数据库读写压力,也提高了系统容错性。

为什么需要分表?

做过报表业务的同学应该都体验过,一条 SQL 执行时间超过几十秒的场景。

导致数据库查询慢的原因有很多,SQL 没命中索引、like 扫全表、用了函数计算,这些都可以通过优化手段解决,可唯独数据量大是 MySQL 无法通过自身优化解决的。慢的根本原因是 InnoDB 存储引擎,聚簇索引结构的 B+tree 层级变高,磁盘 IO 变多查询性能变慢,详细原理自行查找一下,这里不用过多篇幅说明。

阿里的开发手册中有条建议,单表行数超 500 万行或者单表容量超过 2GB,就推荐分库分表,然而理想和实现总是有差距的,阿里这种体量的公司不差钱当然可以这么用,实际上很多公司单表数据几千万、亿级别仍然不选择分库分表。

什么时候分库分表

技术群里经常会有小伙伴问,到底什么情况下会用分库分表呢?

分库分表要解决的是现存海量数据访问的性能瓶颈,对持续激增的数据量所做出的架构预见性。

是否分库分表的关键指标是数据量,我们以 fire100.top 这个网站的资源表 t_resource 为例,系统在运行初始的时候,每天只有可怜的几十个资源上传,这时使用单库、单表的方式足以支持系统的存储,数据量小几乎没什么数据库性能瓶颈。

但某天开始一股神秘的流量进入,系统每日产生的资源数据量暴增至十万甚至上百万级别,这时资源表数据量到达千万级,查询响应变得缓慢,数据库的性能瓶颈逐渐显现。

以 MySQL 数据库为例,单表的数据量在达到亿条级别,通过加索引、SQL 调优等传统优化策略,性能提升依旧微乎其微时,就可以考虑做分库分表了。

既然 MySQL 存储海量数据时会出现性能瓶颈,那么我们是不是可以考虑用其他方案替代它?比如高性能的非关系型数据库 MongoDB

可以,但要看存储的数据类型!

现在互联网上大部分公司的核心数据几乎是存储在关系型数据库(MySQL、Oracle 等),因为它们有着 NoSQL 如法比拟的稳定性和可靠性,产品成熟生态系统完善,还有核心的事务功能特性,也是其他存储工具不具备的,而评论、点赞这些非核心数据还是可以考虑用 MongoDB 的。

如何分库分表

分库分表的核心就是对数据的分片(Sharding)并相对均匀的路由在不同的库、表中,以及分片后对数据的快速定位与检索结果的整合。

分库与分表可以从:垂直(纵向)和 水平(横向)两种纬度进行拆分。下边我们以经典的订单业务举例,看看如何拆分。

垂直拆分

1、垂直分库

垂直分库一般来说按照业务和功能的维度进行拆分,将不同业务数据分别放到不同的数据库中,核心理念 专库专用

按业务类型对数据分离,剥离为多个数据库,像订单、支付、会员、积分相关等表放在对应的订单库、支付库、会员库、积分库。不同业务禁止跨库直连,获取对方业务数据一律通过 API 接口交互,这也是微服务拆分的一个重要依据。

垂直分库很大程度上取决于业务的划分,但有时候业务间的划分并不是那么清晰,比如:电商中订单数据的拆分,其他很多业务都依赖于订单数据,有时候界线不是很好划分。

垂直分库把一个库的压力分摊到多个库,提升了一些数据库性能,但并没有解决由于单表数据量过大导致的性能问题,所以就需要配合后边的分表来解决。

2、垂直分表

垂直分表针对业务上字段比较多的大表进行的,一般是把业务宽表中比较独立的字段,或者不常用的字段拆分到单独的数据表中,是一种大表拆小表的模式。

例如:一张 t_order 订单表上有几十个字段,其中订单金额相关字段计算频繁,为了不影响订单表 t_order 的性能,就可以把订单金额相关字段拆出来单独维护一个 t_order_price_expansion 扩展表,这样每张表只存储原表的一部分字段,通过订单号 order_no 做关联,再将拆分出来的表路由到不同的库中。

数据库它是以行为单位将数据加载到内存中,这样拆分以后核心表大多是访问频率较高的字段,而且字段长度也都较短,因而可以加载更多数据到内存中,减少磁盘 IO,增加索引查询的命中率,进一步提升数据库性能。

水平拆分

上边垂直分库、垂直分表后还是会存在单库、表数据量过大的问题,当我们的应用已经无法在细粒度的垂直切分时,依旧存在单库读写、存储性能瓶颈,这时就要配合水平分库、水平分表一起了。

1、水平分库

水平分库是把同一个表按一定规则拆分到不同的数据库中,每个库可以位于不同的服务器上,以此实现水平扩展,是一种常见的提升数据库性能的方式。

例如:db_orde_1db_order_2 两个数据库内有完全相同的 t_order 表,我们在访问某一笔订单时可以通过对订单的订单编号取模的方式 订单编号 mod 2 (数据库实例数) ,指定该订单应该在哪个数据库中操作。

这种方案往往能解决单库存储量及性能瓶颈问题,但由于同一个表被分配在不同的数据库中,数据的访问需要额外的路由工作,因此系统的复杂度也被提升了。

2、水平分表

水平分表是在同一个数据库内,把一张大数据量的表按一定规则,切分成多个结构完全相同表,而每个表只存原表的一部分数据。

例如:一张 t_order 订单表有 900 万数据,经过水平拆分出来三个表,t_order_1t_order_2t_order_3,每张表存有数据 300 万,以此类推。

水平分表尽管拆分了表,但子表都还是在同一个数据库实例中,只是解决了单一表数据量过大的问题,并没有将拆分后的表分散到不同的机器上,还在竞争同一个物理机的 CPU、内存、网络 IO 等。要想进一步提升性能,就需要将拆分后的表分散到不同的数据库中,达到分布式的效果。

数据存在哪个库的表

分库分表以后会出现一个问题,一张表会出现在多个数据库里,到底该往哪个库的哪个表里存呢?

上边我们多次提到过一定规则 ,其实这个规则它是一种路由算法,决定了一条数据具体应该存在哪个数据库的哪张表里。

常见的有 取模算法 、范围限定算法范围+取模算法 、预定义算法

1、取模算法

关键字段取模(对 hash 结果取余数 hash (XXX) mod N),N 为数据库实例数或子表数量)是最为常见的一种路由方式。

以 t_order 订单表为例,先给数据库从 0 到 N-1 进行编号,对 t_order 订单表中 order_no 订单编号字段进行取模 hash(order_no) mod N,得到余数 ii=0 存第一个库,i=1 存第二个库,i=2 存第三个库,以此类推。

同一笔订单数据会落在同一个库、表里,查询时用相同的规则,用 t_order 订单编号作为查询条件,就能快速的定位到数据。

优点

实现简单,数据分布相对比较均匀,不易出现请求都打到一个库上的情况。

缺点

取模算法对集群的伸缩支持不太友好,集群中有 N 个数据库实 ·hash(user_id) mod N,当某一台机器宕机,本应该落在该数据库的请求就无法得到处理,这时宕掉的实例会被踢出集群。

此时机器数减少算法发生变化 hash(user_id) mod N-1,同一用户数据落在了在不同数据库中,等这台机器恢复,用 user_id 作为条件查询用户数据就会少一部分。

2、范围限定算法

范围限定算法以某些范围字段,如时间或 ID区拆分。

用户表 t_user 被拆分成 t_user_1t_user_2t_user_3 三张表,后续将 user_id 范围为 1 ~ 1000w 的用户数据放入 t_user_1,1000~ 2000w 放入 t_user_2,2000~3000w 放入 t_user_3,以此类推。按日期范围划分同理。

优点

  • 单表数据量是可控的
  • 水平扩展简单只需增加节点即可,无需对其他分片的数据进行迁移

缺点

  • 由于连续分片可能存在数据热点,比如按时间字段分片时,如果某一段时间(双 11 等大促)订单骤增,存 11 月数据的表可能会被频繁的读写,其他分片表存储的历史数据则很少被查询,导致数据倾斜,数据库压力分摊不均匀。

3、范围 + 取模算法

为了避免热点数据的问题,我们可以对上范围算法优化一下

这次我们先通过范围算法定义每个库的用户表 t_user 只存 1000w 数据,第一个 db_order_1 库存放 userId 从 1 ~ 1000w,第二个库 1000~2000w,第三个库 2000~3000w,以此类推。

每个库里再把用户表 t_user 拆分成 t_user_1t_user_2t_user_3 等,对 userd 进行取模路由到对应的表中。

有效的避免数据分布不均匀的问题,数据库水平扩展也简单,直接添加实例无需迁移历史数据。

4、地理位置分片

地理位置分片其实是一个更大的范围,按城市或者地域划分,比如华东、华北数据放在不同的分片库、表。

5、预定义算法

预定义算法是事先已经明确知道分库和分表的数量,可以直接将某类数据路由到指定库或表中,查询的时候亦是如此。

分库分表出来的问题

了解了上边分库分表的拆分方式不难发现,相比于拆分前的单库单表,系统的数据存储架构演变到现在已经变得非常复杂。看几个具有代表性的问题,比如:

分页、排序、跨节点联合查询

分页、排序、联合查询,这些看似普通,开发中使用频率较高的操作,在分库分表后却是让人非常头疼的问题。把分散在不同库中表的数据查询出来,再将所有结果进行汇总合并整理后提供给用户。

比如:我们要查询 11、12 月的订单数据,如果两个月的数据是分散到了不同的数据库实例,则要查询两个数据库相关的数据,在对数据合并排序、分页,过程繁琐复杂。

事务一致性

分库分表后由于表分布在不同库中,不可避免会带来跨库事务问题。后续会分别以阿里的 Seata 和 MySQL 的 XA 协议实现分布式事务,用来比较各自的优势与不足。

全局唯一的主键

分库分表后数据库表的主键 ID 业务意义就不大了,因为无法在标识唯一一条记录,例如:多张表 t_order_1t_order_2 的主键 ID 全部从 1 开始会重复,此时我们需要主动为一条记录分配一个 ID,这个全局唯一的 ID 就叫分布式ID,发放这个 ID 的系统通常被叫发号器。

多数据库高效治理

对多个数据库以及库内大量分片表的高效治理,是非常有必要,因为像某宝这种大厂一次大促下来,订单表可能会被拆分成成千上万个 t_order_n 表,如果没有高效的管理方案,手动建表、排查问题是一件很恐怖的事。

历史数据迁移

分库分表架构落地以后,首要的问题就是如何平滑的迁移历史数据,增量数据和全量数据迁移,这又是一个比较麻烦的事情,后边详细讲。

分库分表架构模式

分库分表架构主要有两种模式:client 客户端模式和 proxy 代理模式

客户模式

client 模式指分库分表的逻辑都在你的系统应用内部进行控制,应用会将拆分后的 SQL 直连多个数据库进行操作,然后本地进行数据的合并汇总等操作。

代理模式

proxy 代理模式将应用程序与 MySQL 数据库隔离,业务方的应用不在需要直连数据库,而是连接 proxy 代理服务,代理服务实现了 MySQL 的协议,对业务方来说代理服务就是数据库,它会将 SQL 分发到具体的数据库进行执行,并返回结果。该服务内有分库分表的配置,根据配置自动创建分片表。

如何抉择

如何选择 client 模式和 proxy 模式,我们可以从以下几个方面来简单做下比较。

1、性能

性能方面 client 模式表现的稍好一些,它是直接连接 MySQL 执行命令; proxy 代理服务则将整个执行链路延长了,应用 -> 代理服务 ->MySQL,可能导致性能有一些损耗,但两者差距并不是非常大。

2、复杂度

client 模式在开发使用通常引入一个 jar 可以; proxy 代理模式则需要搭建单独的服务,有一定的维护成本,既然是服务那么就要考虑高可用,毕竟应用的所有 SQL 都要通过它转发至 MySQL。

3、升级

client 模式分库分表一般是依赖基础架构团队的 Jar 包,一旦有版本升级或者 Bug 修改,所有应用到的项目都要跟着升级。小规模的团队服务少升级问题不大,如果是大公司服务规模大,且涉及到跨多部门,那么升级一次成本就比较高;

proxy 模式在升级方面优势很明显,发布新功能或者修复 Bug,只要重新部署代理服务集群即可,业务方是无感知的,但要保证发布过程中服务的可用性。

4、治理、监控

client 模式由于是内嵌在应用内,应用集群部署不太方便统一处理;proxy 模式在对 SQL 限流、读写权限控制、监控、告警等服务治理方面更优雅一些。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/75143.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JAVA电商平台免费搭建 B2B2C商城系统 多用户商城系统 直播带货 新零售商城 o2o商城 电子商务 拼团商城 分销商城 bbc

​ 1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前…

第三章:前端UI框架介绍

文章目录 一、Bootstrap1.1 Bootstrap简介及版本1.2 Bootstrap使用 二、AntDesign2.1 简介2.2 基本使用2.3 antd pro 三、ElementUI3.1 简介3.2 基本使用 四、Vant4.1 简介4.2 基本使用 一、Bootstrap 1.1 Bootstrap简介及版本 1、 简介 Bootstrap,来白 Twitter&a…

metaRTC7 demo mac/ios编译指南

概要 metaRTC7.0开始全面支持mac/ios操作系统,新版本7.0.023 mac os demo 包含有srs/zlm的推拉流演示。发布版自带了x64版第三方类库,arm版第三方类库还需开发者自己编译。 源码下载 下载文件metartc7.023.7z https://github.com/metartc/metaRTC/re…

【JavaEE进阶】SpringBoot 日志

文章目录 一. 日志有什么用?二. 自定义日志打印1. 日志的使用与打印 三. 日志级别1. 日志级别有什么用?2. 日志级别的分类及使用 四. 日志持久化五. 更简单的日志输出---Lombok1. Lombok的使用2. lombok原理解释2.1 Lombok更多注解说明 一. 日志有什么用? 在Java中&#xf…

IDE的下载和使用

IDE 文章目录 IDEJETBRAIN JETBRAIN 官网下载对应的ide 激活方式 dxm的电脑已经把这个脚本下载下来了,脚本是macjihuo 以后就不用买了

PDB Database - RCSB PDB 数据集 (2023.8) 的多维度信息统计

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132297736 RCSB PDB 数据集是一个收集了蛋白质的三维结构信息的数据库,是世界蛋白质数据库(wwPDB)的成员之一&…

Redis辅助功能

一、Redis队列 1.1、订阅 subscribe ch1 ch2 1.2 publish:发布消息 publish channel message 1.3 unsubscribe: 退订 channel 1.4 模式匹配 psubscribe ch* 模糊发布&#xff0c;订阅&#xff0c;退订&#xff0c; p* <channelName> 1.5 发布订阅原理 订阅某个频道或…

高性能跨平台网络通信框架 HP-Socket v5.9.3

项目主页 : http://www.oschina.net/p/hp-socket开发文档 : https://www.docin.com/p-4478351216.html下载地址 : https://github.com/ldcsaa/HP-SocketQQ Group: 44636872, 663903943 v5.9.3 更新 一、主要更新 问题修复&#xff1a;通过 POST/PUT 等带有请求内容的 HTTP 方…

SQL进阶--SQL的常用技巧

一、ORDER BY FIELD() 自定义排序逻辑 排序 ORDER BY 除了可以用 ASC 和 DESC&#xff0c;还可以通过**ORDER BY FIELD(str,str1,...)**自定义字符串/数字来实现排序。这里用 order_diy 表举例&#xff0c;结构以及表数据展示&#xff1a; 二、CASE 表达式 「case when then el…

SAP ME2L/ME2M/ME3M报表增强添加字段(包含:LMEREPI02、SE18:ES_BADI_ME_REPORTING)

ME2L、ME2M、ME3M这三个报表的字段增强&#xff0c;核心点都在同一个结构里 SE11:MEREP_OUTTAB_PURCHDOC 在这里加字段&#xff0c;如果要加的字段是EKKO、EKPO里的数据&#xff0c;直接加进去&#xff0c;啥都不用做&#xff0c;就完成了 如果要加的字段不在EKKO和EKPO这两个…

Salesforce 为什么能够在 CRM 市场获得成功?

Salesforce 为什么能够在 CRM 市场获得成功&#xff1f; 虽然salesforce有着水土不服&#xff0c;数据安全等问题&#xff0c;但依旧受到了国内CRM系统使用者的追捧。 但是近年来国内的一些CRM平台也做得很不错了&#xff0c;我认为没必要执着于非本土系统。 下面就以一个CR…

SpringBoot 3自带的 HTTP 客户端工具

原理 Spring的HTTP 服务接口是一个带有HttpExchange方法的 Java 接口&#xff0c;它支持的支持的注解类型有&#xff1a; HttpExchange&#xff1a;是用于指定 HTTP 端点的通用注释。在接口级别使用时&#xff0c;它适用于所有方法。GetExchange&#xff1a;为 HTTP GET请求指…

【深度学习】日常笔记16

可以将pd.DataFrame数据结构理解为类似于Excel中的表格。pd.DataFrame是pandas库提供的一个二维数据结构&#xff0c;用于存储和操作具有行和列的数据。它类似于Excel中的工作表&#xff0c;其中每一列可以是不同的数据类型&#xff08;例如整数、浮点数、字符串等&#xff09;…

UNIAPP中开发企业微信小程序

概述 需求为使用uni-app开发企业微信小程序。希望可以借助现成的uni-app框架&#xff0c;快速开发。遇到的问题是uni-app引入jweixin-1.2.0.js提示异常: Reason: TypeError: Cannot read properties of undefined (reading ‘title’)。本文中描述了如何解决该问题&#xff0c…

提升物流管理效率,快递批量查询高手软件助你一臂之力

物流管理中&#xff0c;准确跟踪和掌握快递的物流信息是非常重要的。而快递批量查询高手软件的出现&#xff0c;大大提高了物流管理的效率&#xff0c;为企业带来了诸多便利。 传统的快递查询方式往往需要手动逐个输入快递单号&#xff0c;费时费力且容易出错。而有了快递批量查…

代理模式【Proxy Pattern】

什么是代理模式呢&#xff1f;我很忙&#xff0c;忙的没空理你&#xff0c;那你要找我呢就先找我的代理人吧&#xff0c;那代理人总要知道 被代理人能做哪些事情不能做哪些事情吧&#xff0c;那就是两个人具备同一个接口&#xff0c;代理人虽然不能干活&#xff0c;但是被 代…

React 之 Suspense和lazy

一. Suspense 参考链接&#xff1a;https://react.docschina.org/reference/react/Suspense suspense&#xff1a;n. 焦虑、悬念 <Suspense> 允许你显示一个退路方案&#xff08;fallback&#xff09;直到它的所有子组件完成加载。 <Suspense fallback{<Loadin…

【腾讯云 Cloud Studio 实战训练营】使用Cloud Studio构建Java、Python项目

文章目录 一、云IDE1、云IDE简介2、云IDE和云虚拟桌面区别 二、Cloud Studio 简介1、简介2、AI代码助手3、企业源代码安全 三、快速开始1、登录Cloud Studio2、新建工作空间3、代码空间 四、项目构建1、构建Java项目1.1 新建工作空间1.2 初始化项目1.3 初始化小案例1.4、测试Ja…

linux Socket简单编程实例

服务端 网络编程中服务端接受连接的套接字创建过程如下: 1.调用socket函数创建套接字 2.调用bind函数分配IP地址和端口号 3.调用listen函数转为可接收请求状态 4.调用accept函数受理连接请求 #include <stdio.h> #include <stdlib.h> #include <sys/types.h>…

Win10安装GPU支持的最新版本的tensorflow

我在安装好cuda和cudnn后&#xff0c;使用pip install tensorflow安装的tensorflow都提示不能找到GPU&#xff0c; 为此怀疑默认暗转的tensorflow是不带GPU支持的。 在tensorflow官网提供了多个版本的GPU支持的windows的安装包 https://www.tensorflow.org/install/pip?hlz…