ROS2 学习(二)工作空间,节点

工作空间介绍

workspace 是存放整个项目的大目录。

其中包含:

src:源码。

build:编译文件。

install:安装空间,存放编译成功后的目标文件。

log:日志。

我们新建一个工作空间目录,其中包含 src 目录,git clone https://gitee.com/guyuehome/ros2_21_tutorials.git 到 src 目录中。

在工作目录中安装依赖(通过 rosdepc),编译工作空间,设置环境变量。

代码功能包可以通过 ros 的 pkg create 功能创建。在 src 文件夹下执行:

$ ros2 pkg create --build-type ament_cmake learning_pkg_c
$ ros2 pkg create --build-type ament_python learning_pkg_python

C 功能包中包含 package.xml 和 CMakeLists.txt。package.xml 包含包基本信息和所需依赖,CMakeLists.txt 指明如何编译。

Python 功能包中包含 package.xml 和 Setup.cfg/Setup.py,Setup.py 中包含一些程序配置,入口节点等。

https://docs.ros.org/en/humble/Tutorials/Workspace/Creating-A-Workspace.html
https://docs.ros.org/en/humble/Tutorials/Creating-Your-First-ROS2-Package.html

节点

节点是机器人的基本单元,独立执行具体任务。他们可以是不同编程语言,运行在不同位置(云端,本地……)

Helloworld 案例

目标:隔0.5s输出一次 helloworld.

在 learning_node/learning_node/node_helloworld .py 案例中可以看到:

#!/usr/bin/env python3 
# -*- coding: utf-8 -*-

"""
@作者: 古月居(www.guyuehome.com)
@说明: ROS2节点示例-发布“Hello World”日志信息, 使用面向过程的实现方式
"""

import rclpy                                     # ROS2 Python接口库
from rclpy.node import Node                      # ROS2 节点类
import time

def main(args=None):                             # ROS2节点主入口main函数
    rclpy.init(args=args)                        # ROS2 Python接口初始化
    node = Node("node_helloworld")               # 创建ROS2节点对象并进行初始化
    
    while rclpy.ok():                            # ROS2系统是否正常运行
        node.get_logger().info("Hello World")    # ROS2日志输出
        time.sleep(0.5)                          # 休眠控制循环时间
    
    node.destroy_node()                          # 销毁节点对象    
    rclpy.shutdown()                             # 关闭ROS2 Python接口

rclpy:系统。

node:节点。

前面的部分都是固定的, import 包,定义 main 函数,初始化接口。

然后在 learning_node/setup.py 中:

from setuptools import setup

package_name = 'learning_node'

setup(
    name=package_name,
    version='0.0.0',
    packages=[package_name],
    data_files=[
        ('share/ament_index/resource_index/packages',
            ['resource/' + package_name]),
        ('share/' + package_name, ['package.xml']),
    ],
    install_requires=['setuptools'],
    zip_safe=True,
    maintainer='Hu Chunxu',
    maintainer_email='huchunxu@guyuehome.com',
    description='TODO: Package description',
    license='TODO: License declaration',
    tests_require=['pytest'],
    entry_points={
        'console_scripts': [
         'node_helloworld       = learning_node.node_helloworld:main',
         'node_helloworld_class = learning_node.node_helloworld_class:main',
         'node_object            = learning_node.node_object:main',
         'node_object_webcam     = learning_node.node_object_webcam:main',
        ],
    },
)

entry_points 入口点中包含了对应要编译的文件,才可以被 ros run 中找到 learning_node 功能包以及其中的程序,程序中的入口函数。

另一种编程方式(更推荐)是面向节点对象的编程方式。在 node_helloworld_class.py 中:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
@作者: 古月居(www.guyuehome.com)
@说明: ROS2节点示例-发布“Hello World”日志信息, 使用面向对象的实现方式
"""

import rclpy                                     # ROS2 Python接口库
from rclpy.node import Node                      # ROS2 节点类
import time

"""
创建一个HelloWorld节点, 初始化时输出“hello world”日志
"""
class HelloWorldNode(Node):
    def __init__(self, name):
        super().__init__(name)                       # ROS2节点父类初始化
        while rclpy.ok():                            # ROS2系统是否正常运行
            self.get_logger().info("Hello World")    # ROS2日志输出
            time.sleep(0.5)                          # 休眠控制循环时间

def main(args=None):                                 # ROS2节点主入口main函数
    rclpy.init(args=args)                            # ROS2 Python接口初始化
    node = HelloWorldNode("node_helloworld_class")   # 创建ROS2节点对象并进行初始化
    node.destroy_node()                              # 销毁节点对象
    rclpy.shutdown()                                 # 关闭ROS2 Python接口

物品识别

识别图片中的红苹果。

#!/usr/bin/env python3 
# -*- coding: utf-8 -*-

"""
@作者: 古月居(www.guyuehome.com)
@说明: ROS2节点示例-通过颜色识别检测图片中出现的苹果
"""

import rclpy                            # ROS2 Python接口库
from rclpy.node import Node             # ROS2 节点类

import cv2                              # OpenCV图像处理库
import numpy as np                      # Python数值计算库

lower_red = np.array([0, 90, 128])     # 红色的HSV阈值下限
upper_red = np.array([180, 255, 255])  # 红色的HSV阈值上限

def object_detect(image):
    hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)                               # 图像从BGR颜色模型转换为HSV模型
    mask_red = cv2.inRange(hsv_img, lower_red, upper_red)                          # 图像二值化

    contours, hierarchy = cv2.findContours(mask_red, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) # 图像中轮廓检测

    for cnt in contours:                                                          # 去除一些轮廓面积太小的噪声
        if cnt.shape[0] < 150:
            continue
            
        (x, y, w, h) = cv2.boundingRect(cnt)                                      # 得到苹果所在轮廓的左上角xy像素坐标及轮廓范围的宽和高
        cv2.drawContours(image, [cnt], -1, (0, 255, 0), 2)                        # 将苹果的轮廓勾勒出来
        cv2.circle(image, (int(x+w/2), int(y+h/2)), 5, (0, 255, 0), -1)           # 将苹果的图像中心点画出来
	    
    cv2.imshow("object", image)                                                    # 使用OpenCV显示处理后的图像效果
    cv2.waitKey(0)
    cv2.destroyAllWindows()

def main(args=None):                                                              # ROS2节点主入口main函数
    rclpy.init(args=args)                                                         # ROS2 Python接口初始化
    node = Node("node_object")                                                     # 创建ROS2节点对象并进行初始化
    node.get_logger().info("ROS2节点示例:检测图片中的苹果")

    image = cv2.imread('/home/jingqing3948/Develop/ros/dev_ws/src/ros2_21_tutorials/learning_node/learning_node/apple.jpg')  # 读取图像
    object_detect(image)                                                            # 苹果检测
    rclpy.spin(node)                                                               # 循环等待ROS2退出
    node.destroy_node()                                                            # 销毁节点对象
    rclpy.shutdown()                                                               # 关闭ROS2 Python接口

1691975253963

也可以把 image 改成调用摄像头,来动态识别。

cap = cv2.VideoCapture(0)

    
    while rclpy.ok():
        ret, image = cap.read()          # 读取一帧图像
         
        if ret == True:
            object_detect(image)          # 苹果检测

当然,节点并不是孤立的,比如用摇杆控制游戏界面。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/75076.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

转行软件测试四个月学习,第一次面试经过分享

我是去年上半年从销售行业转行到测试的&#xff0c;从销售公司辞职之后选择去培训班培训软件测试&#xff0c;经历了四个月左右的培训&#xff0c;在培训班结课前两周就开始投简历了&#xff0c;在结课的时候顺利拿到了offer。在新的公司从事软件测试工作已经将近半年有余&…

python3 0基础学习笔记

0基础学习笔记&#xff0c;临时有事暂停后边会继续学习 基础内容1. 条件语句 if - elif - else2. 错误铺捉try - except(一种保险策略&#xff09;3. 四种开发模式4. 函数&#xff1a;def用来定义函数的5. 最大值最小值函数&#xff0c;max &#xff0c;min6. is 严格的相等&am…

EXCEL按列查找,最终返回该列所需查询序列所对应的值,VLOOKUP函数

EXCEL按列查找&#xff0c;最终返回该列所需查询序列所对应的值 示例&#xff1a;国标行业分类汉字&#xff0c;匹配id 使用VLOOKUP函数 第一参数&#xff1a;拿去查询的值。 第二参数&#xff1a;匹配的数据。 Ps&#xff1a;Sheet1!$C 21 : 21: 21:E 117 &#xff0c;需要…

Idea 快捷键整理

Idea快捷键和自动代码补全汇总 idea快捷键汇总 Ctrl 快捷键说明Ctrl F在当前文件进行文本查找 &#xff08;必备&#xff09;Ctrl R在当前文件进行文本替换 &#xff08;必备&#xff09;Ctrl Z撤销 &#xff08;必备&#xff09;Ctrl Y删除光标所在行 或 删除选中的行 &am…

MySQL缓存策略

文章目录 一、MySQL缓存方案的作用二、提高MySQL访问性能的方式2.1 读写分离2.1.1 是什么&#xff1f;2.1.2 解决了什么&#xff1f;2.1.3 原理是什么&#xff1f; 2.2 连接池2.1.1 是什么&#xff1f;2.1.2 解决了什么&#xff1f;2.1.3 原理是什么&#xff1f; 2.3 异步连接2…

数据通信——VRRP

引言 之前把实验做了&#xff0c;结果发现我好像没有写过VRRP的文章&#xff0c;连笔记都没记过。可能是因为对STP的记忆&#xff0c;导致现在都没忘太多。 一&#xff0c;什么是VRRP VRRP全名是虚拟路由冗余协议&#xff0c;虚拟路由&#xff0c;看名字就知道这是运行在三层接…

谷粒商城第十一天-品牌管理中关联分类

目录 一、总述 二、前端部分 1. 调整查询调用 2. 关联分类 三、后端部分 四、总结 一、总述 之前是在商品的分类管理中直接使用的若依的逆向代码 有下面的几个问题&#xff1a; 1. 表格上面的参数填写之后&#xff0c;都是按照完全匹配进行搜索&#xff0c;没有模糊匹配…

图像像素梯度

梯度 在高数中&#xff0c;梯度是一个向量&#xff0c;是有方向有大小。假设一二元函数f(x,y)&#xff0c;在某点的梯度有&#xff1a; 结果为&#xff1a; 即方向导数。梯度的方向是函数变化最快的方向&#xff0c;沿着梯度的方向容易找到最大值。 图像梯度 在一幅模糊图…

CDH6.3.2搭建HIVE ON TEZ

参考 https://blog.csdn.net/ly8951677/article/details/124152987 ----配置hive运行引擎 在/etc/hive/conf/hive-site.xml中修改如下&#xff1a; hive.execution.engine mr–>tez hive.execution.engine 设为tez或者运行代码的时候&#xff1a; set hive.execution.eng…

无涯教程-Perl - setsockopt函数

描述 此函数将SocketoptionsOPTNAME的值设置为SOCKET上指定级别的OPTVAL值。您需要导入Socket模块,以获取Tabl中显示的OPTNAME的有效值 语法 以下是此函数的简单语法- setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL返回值 如果失败,此函数返回undef&#xff1b;如果成功,则返…

私有IP地址有多重要?

私有IP地址是指在局域网中使用的IP地址&#xff0c;而不是公共互联网上可访问的IP地址。私有IP地址不唯一&#xff0c;可以在不同的局域网中重复使用。这种地址分配方式能够有效地节省IP地址资源。 近日&#xff0c;国际互联网协会&#xff08;IATA&#xff09;发布了一项关于私…

Linux Day07

一、僵死进程 1.1僵死进程产生的原因 子进程先于父进程结束, 而父进程没有获取子进程退出码&#xff0c;释放子进程占用的资源&#xff0c;此时子进程将成为一个僵死进程。 在第一个框这里时父进程子进程都没有结束&#xff0c;显示其pid 父进程是2349&#xff0c;子进程是235…

小红书运营 变现方法总结(精)

大家好&#xff0c;我是网媒智星&#xff0c;今天跟大家分享一下小红书运营方面的知识&#xff0c;怎样利用小红书变现&#xff1f;全篇倾情干货输出&#xff0c;认真学习&#xff0c;保证您收获多多。 首先&#xff0c;让我们来分析一下小红书平台的优势。关于卖东西&#xff…

SOLIDWORKS PDM—文件版本的管控

SOLIDWORKS产品数据管理 (PDM) 解决方案可帮助您控制设计数据&#xff0c;并且从本质上改进您的团队就产品开发进行管理和协作的方式。使用 SOLIDWORKS PDM Professional&#xff0c;您的团队能够&#xff1a;1. 安全地存储和索引设计数据以实现快速检索&#xff1b;2. 打消关于…

解决macOS执行fastboot找不到设备的问题

背景 最近准备给我的备用机Redmi Note 11 5G刷个类原生的三方ROM&#xff0c;MIUI实在是用腻了。搜罗了一番&#xff0c;在XDA上找到了一个基于Pixel Experience开发的ROM&#xff1a;PixelExperience Plus for Redmi Note 11T/11S 5G/11 5G/POCO M4 Pro 5G (everpal)&#xf…

Python爬虫IP代理池的建立和使用

写在前面 建立Python爬虫IP代理池可以提高爬虫的稳定性和效率&#xff0c;可以有效避免IP被封锁或限制访问等问题。 下面是建立Python爬虫IP代理池的详细步骤和代码实现&#xff1a; 1. 获取代理IP 我们可以从一些代理IP网站上获取免费或付费的代理IP&#xff0c;或者自己租…

Python中执行调用JS的多种方法汇总

1. 写在前面 做爬虫的人大家都知道&#xff0c;现在国内Web或App普遍防护都做的很好&#xff0c;且越有价值的网站这方面越强 再小再弱的网站现在或多或少都要整点反爬 JS在反爬中应用非常广泛&#xff0c;现在做爬虫工程师基本都要懂JS&#xff0c;因为各种JS加密需要逆向&…

网站SSL安全证书是什么及其重要性

网站SSL安全证书具体来说是一个数字文件&#xff0c;是由受信任的数字证书颁发机构&#xff08;CA机构&#xff09;进行审核颁发的&#xff0c;其中包含CA发布的信息&#xff0c;该信息表明该网站已使用加密连接进行了安全保护。 网站SSL安全证书也被称为SSL证书、https证书和…

数字化转型能带来哪些价值?

数字化转型可以为个人、企业和整个社会带来广泛的价值。以下是数字化转型的一些主要优势&#xff1a; 1.提高效率和生产力&#xff1a;重复任务的自动化和简化流程可以提高效率和生产力。这使员工能够专注于更具战略性和增值性的活动。 2.增强的客户体验&#xff1a;数字化转…