应用图扑 HT for Web 搭建拓扑关系图

图片

拓扑结构在计算机网络设计和通信领域中非常重要,因为它描述了网络中的设备(即“点”)如何相互连接(即通过“线”)。这种结构不仅涉及物理布局,即物理拓扑,还可以涉及逻辑或虚拟的连接方式,即逻辑拓扑

图片

图片

图扑软件自研 HT for Web 产品曾参与搭建了众多拓扑可视化解决方案。如机房通信拓扑可视化,实现通过图形图像直观展示机房内部网络设备、服务器、存储设备以及之间连接关系的技术。帮助 IT 管理员和网络工程师更加直观地理解机房的网络结构,便于故障排查、网络优化和规划扩展。

在 HT 中,ht.Node 可充当拓扑图中的“点”角色,ht.Node 上可显示图片图标,这使得创建拓扑图时能够直观地表示每一个“点”的特征。至于拓扑图中的“线”,即用于体现两个节点之间关系的元素,可由 ht.Edge 类型承担这一任务。ht.Edge用于连接起始和目标两个节点,两个节点间可以有多条ht.Edge存在,也允许起始和目标为同一节点。

在搭建 HT 拓扑图前,我们需要先创建一个 HT 的 2D 视图:

const dm = new ht.DataModel(); // 创建一个数据模型const g2d = new ht.graph.GraphView(dm); // 创建一个 2D 视图g2d.addToDOM(); // 将 2D 视图添加到 body 中dm.setBackground('rgb(240,237,237)'); // 设置背景

2D 视图还可按照需求开启树层次渲染:

dm.setHierarchicalRendering(true);

2D 视图创建完成之后就可以创建“点”和“线”了:

const node1 = createNode('symbols/电信/icon_交换机.json', { x: 0, y: 0 }, "交换机");const node2 = createNode('symbols/电信/icon_路由.json', { x: 300, y: 0 }, "路由");createEdge(node1, node2);function createNode(icon, position, name) {     const node = new ht.Node(); // 创建一个 ht.Node 节点     node.s({         'label': name,         'label.color': "#fff"     });     node.setImage(icon);     node.p(position);     node.setSize({ width: 100, height: 100 });     dm.add(node); // 将节点加到数据模型中     return node;}function createEdge(source, target, color, reverse) {     const edge = new ht.Edge(source, target); // 创建一个 ht.Edge     dm.add(edge); // 将连线节点加到数据模型中     return edge;}

运行代码后的效果:

图片

复杂连线

以上展示了一个简洁的示例,直观地展现了如何在图扑自研 HT for Web 中创建节点并将它们通过连线相连。实际应用中的情形往往更为复杂,需要根据实际数据构建拓扑结构。在这个过程中,核心步骤依旧是首先创建 ht.Node 实例以表示各个节点,再利用 ht.Edge 实例来实现节点之间的连接。接下来,让我们通过复杂一些的示例来演示。

创建节点

为了批量创建节点并方便管理节点数据,示例中定义了结构化的数据格式,并将数据存储在一个 JSON 文件中,再通过 ht.Default.xhrLoad() 去获取到 JSON 文件中的数据。获取到数据后就可批量创建节点。

在实际的运用场景中,也可以通过任何 web 端通讯方式 HTTP/AJAX、WebSocket 去获取数据。

equipment.json 文件中定义的数据格式:

[    {        "name": "核心交换机1", // 设备名称        "code": "EQ_ASBB1425", // 设备编码(唯一标识)        "icon": "symbols/user/900-word/电信拓扑图标/icon_核心交换机.json", // 设备 icon// 设备在图纸中的位置"size": 60, // 节点大小        "position": {            "x": 0,            "y": 100        }    },    {        "name": "核心交换机2",        "code": "EQ_ASBB1478",        "icon": "symbols/user/900-word/电信拓扑图标/icon_核心交换机.json",        "position": {            "x": 200,            "y": 0        }    },    {        "name": "服务器1",        "code": "EQ_BCGJ2121",        "icon": "symbols/user/900-word/电信拓扑图标/空白服务器.json",        "position": {            "x": 200,            "y": 250        }    },   ...]

获取到数据并批量创建节点:

ht.Default.xhrLoad('./equipment.json', function (json) {       const data = ht.Default.parse(json);       data.forEach((item) => {             createNode(item);        })})function createNode(data) {        const node = new ht.Node();        node.setTag(data.code); // 设置节点唯一标识        node.setImage(data.icon);        node.p(data.position);        node.s('2d.movable', false); // 禁止移动        node.setSize({ width: data.size || 150, height: data.size || 150 });        dm.add(node);         return node;}

图片

创建连线

与节点数据相同,示例中定义了连线对应格式,并且也是存储在一个 JSON 文件中,再通过 ht.Default.xhrLoad() 获取数据。JSON 文件中定义了连线中最重要的几个因素:起始节点、目标节点、连线颜色。

[    {        "source": "EQ_ASBB1425", // 起始节点的唯一标识        "target": "EQ_BCGJ2121", // 结束节点的唯一标识        "color": "rgb(0,199,7)" // 连线颜色    },    {        "source": "EQ_ASBB1425",        "target": "EQ_BCGJ2131",        "color": "rgb(0,199,7)"},...]

获取数据并且批量创建连线,这一步需要在创建节点之后执行:

ht.Default.xhrLoad('./connectData.json', function (json) {      const connectData = ht.Default.parse(json);      connectData.forEach((item) => {            createEdge(item);      })})function createEdge(data) {    const source = dm.getDataByTag(data.source);    const target = dm.getDataByTag(data.target);    const edge = new ht.Edge(source, target);    edge.s({        "edge.color": data.color || "rgb(0,199,7)",        "edge.width": 4,        "shadow2.offset.x": -4,        "shadow2.offset.y": 7,        "shadow2": true,        "shadow2.color": "rgba(0,0,0,0.18)",})dm.add(edge);    dm.moveToTop(edge); // 将节点移动至顶部    return edge;}

图片

到这里,基本上整个拓扑的效果都已经展示出来了,但是可能还存在一些问题。如终端路由之间的连线被服务器挡住了,可能会被认为是路由 1—服务器 1—服务器 2—路由 2 这样的连接。

图片

这种情况下,就可以采用其他的连线方式。ht.Edge 提供了多种的连线方式,可以通过 edge.s(‘edge.type’, 连接方式) 进行设置。下面展示几种不同的连接方式:

1.弯曲:edge.s(‘edge.type’, ‘flex2’)

图片

2.正交:edge.s(‘edge.type’, ‘ortho2’)

图片

3.先水平后垂直:edge.s(‘edge.type’, ‘h.v2’)

图片

4.先水平后垂直:edge.s(‘edge.type’, ‘v.h2’)

图片

......

ht.Edge 还有很多种的连线方式,这里就先介绍以上几种方式。

在这个示例内,两个路由之间的连线需要跨域多个其他的连线,为了使得连线更加美观易懂,于是我就这条连线采用了 points 的连线方式,这种方式有极高的灵活性,可在连线路径上自由地添加控制点,从而实现非常多样化的效果。

points 类型的连线,有两个非常重要的属性:

  • edge.points:控制点信息;

  • edge.segments:用来标识在绘制时如何使用 points 数组中的顶点信息。

将示例中这条连线的连线类型改为 points,并设置上相应的属性:

edge.s({    'edge.type': 'points',    'edge.center': true,    'edge.points': [        { "x": 680, "y": 105 },        { "x": 490, "y": 200 },        { "x": 470, "y": 200 },        { "x": 410, "y": 230 },        { "x": 400, "y": 250 },        { "x": 360, "y": 270 },        { "x": 340, "y": 270 },        { "x": 260, "y": 310 },        { "x": 250, "y": 330 },        { "x": 80, "y": 415 }    ],    'edge.segments': [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]});

使用以上 points 连线类型实现的效果:

图片

增加背景和装饰

可创建一些 ht.Shape 节点作为背景装饰,突出显示特定的设备区域。

createShape([    { x: -100, y: 130 },    { x: 230, y: -50 },    { x: 340, y: 15 },    { x: 10, y: 195 },    { x: -100, y: 130 }], [1, 2, 2, 2, 5])createShape([    { x: -155, y: 354 },    { x: 575, y: -30 },    { x: 805, y: 110 },    { x: 60, y: 510 },    { x: -155, y: 355 },], [1, 2, 2, 2, 5]);createShape([    { x: 300, y: 470 },    { x: 660, y: 275 },    { x: 805, y: 350 },    { x: 435, y: 550 },    { x: 300, y: 470 },], [1, 2, 2, 2, 5])function createShape(points, segments) {    const shape = new ht.Shape();    shape.setPoints(points);    shape.setSegments(segments);    shape.s({        'shape.background': "#fff",        "shape.border.color": "rgba(13,46,79,0.67)",        "shape.border.width": 0.5,    })    dm.add(shape);    dm.moveToTop(shape);    return shape;}

添加背景后的效果如下:

图片

增加一些装饰的节点,这些节点本质上也都是 ht.Node,只是显示了不同的图标/图片,效果如下:

图片

添加箭头

在复杂的网络拓扑中,连线上常常需要表示数据流动方向。在使用图扑 HT 绘制连线时,ht.Edge 提供了 icons 属性,通过 icons 属性,可在 ht.Edge 上定义一系列图标并设置它们在连线上的位置。

在设置 icons 属性前,需要先注册好图标:

ht.Default.setImage('toArrow', {    width: 40,    height: 20,    comps: [        {            type: 'shape',points: [5, 2, 10, 10, 5, 18, 20, 10],            closePath: true,            background: 'rgb(0,199,7)',            borderWidth: 1,            borderColor: 'rgb(0,199,7)',            gradient: 'spread.vertical'        }    ]});ht.Default.setImage('fromArrow', {    width: 12,    height: 12,    comps: [        {            type: 'circle',            rect: [1, 1, 10, 10],            background: 'rgb(0,199,7)'        }    ]});

在 ht.Edge 上设置 icons:

edge.addStyleIcon("fromArrow", {     position: 15, // 图标位置     keepOrien: true, // 图标是否默认自动调整方向以保持最好的阅读效果     names: ['fromArrow']});edge.addStyleIcon("toArrow", {     position: 19,     keepOrien: true,     names: ['toArrow']});

设置 icons 之后的效果:

图片

流动动画

在图扑自研产品 HT for Web 中,使用 ht-flow.js 插件,能够为 ht.Edge 连线添加流动动画效果。这种效果可用于表示数据传输、能源流动或任何类型的动态连接。使用 ht-flow.js 插件实现的流动效果配置起来也十分简单,正确引入 ht-flow.js 插件后,使用 g2d.enableFlow(60); 开启流动,再在 ht.Edge 上设置相应的流动属性即可。

ht.Edge 配置流动效果的一些属性说明:

  • flow:布尔值,设置为 true 以启用流动效果。

  • flow.count:控制流动组的个数,默认为 1。

  • flow.step:控制流动的步进,默认为 3。

  • flow.element.count: 每个流动组中的元素的个数,默认为 10。

  • flow.element.space: 流动组中元素的间隔,默认为 3.5。

  • flow.element.image: 字符串类型,指定流动组中元素的图片,图片需要提前通过 ht.Default.setImage 注册。目前支持设置。

  • flow.element.background: 流动组中元素的背景颜色,默认为 rgba(255, 255, 114, 0.4)。

  • flow.element.shadow.begincolor: 字符串类型,表示流动组中的元素的渐变阴影的中心颜色,默认为 rgba(255, 255, 0, 0.3)。

  • flow.element.shadow.endcolor: 字符串类型,表示流动组中的元素的渐变阴影的边缘颜色,默认为 rgba(255, 255, 0, 0)。

  • flow.element.shadow.visible:流动阴影是否可见。

  • flow.begin.percent:开始的位置,值为 0 - 1,默认是 0。

  • flow.element.autorotate:是否自动朝向,根据连线的角度自动朝向。

在示例的 ht.Edge 上设置流动属性:

edge.s({        "flow": true,        "flow.element.background": "rgba(240, 225, 19, 0.5)",        "flow.element.shadow.begincolor": "rgba(240, 225, 19, 0.5)",        "flow.element.shadow.endcolor": "rgba(240, 225, 19, 0)",        "flow.element.count": 1 });

设置完成后的效果:

图片

在更为复杂的场景中,仅仅依赖简单的样式配置难以满足设计需求,为此 ht-flow.js 提供了 flow.element.image 属性,该属性支持将流动的元素设置为图片或图标,还支持设置为多个图片/图标流动的效果。

在流动上设置图标,需要先注册图标:

ht.Default.setImage('dataIcon1', {    "width": 50,    "height": 50,    "comps": [        {            "type": "shape",            "background": "rgb(125,195,125)",            "borderColor": "#979797",            "points": [                2.94441,                16.1039,                26.41008,                16.1039,                26.41008,                4.28571,                47.05559,                25.58442,                27.23783,                45.71429,                27.23783,                33.84863,                2.94441,                33.84863,                2.94441,                16.1039            ]        }    ]})ht.Default.setImage('dataIcon2', {    "width": 50,    "height": 50,    "comps": [        {            "type": "shape",            "background": "#32D3EB",            "borderColor": "#979797",            "points": [                2.94441,                16.1039,                26.41008,                16.1039,                26.41008,                4.28571,                47.05559,                25.58442,                27.23783,                45.71429,                27.23783,                33.84863,                2.94441,                33.84863,                2.94441,                16.1039            ]        }    ]});在 ht.Edge 上设置属性:edge.s({    "flow": true,    "flow.element.count": 2,    "flow.element.image": ["dataIcon1", "dataIcon2"],    "flow.element.max": 20,    "flow.element.min": 20,    "flow.element.shadow.visible": false,    "flow.element.space": 50,    "flow.element.autorotate": true});

设置完成后的效果:

图片

拓扑可视化优点

  1. 直观性:将抽象的关系和数据通过图形呈现,使得人们可以直观地理解和分析系统或网络的结构。

  2. 互动性:现代拓扑可视化工具通常支持用户与图形的交互操作,如缩放、拖拽节点、探索节点之间的路径等,进一步提升了分析的深度和广度。

  3. 动态性:能够实时反映系统或网络的变化,及时展现新增元素和调整后的结构关系,对于监控和管理系统状态尤为重要。

  4. 灵活性:用户可以根据需要选择不同的布局算法,调整图形的展示方式,更好地适应不同的分析场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/750687.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++ ─── vector模拟实现的扩容拷贝问题

扩容拷贝问题 源代码使用memcpy拷贝&#xff0c;在使用vector<int>存储内置类型时没有问题&#xff0c; 但是如果存储的是含有指针的类型&#xff0c;如string&#xff0c;就会发生浅拷贝问题 //3、容量相关void reserve(size_t n){if (n > capacity()){size_t old_si…

数字水产养殖中的鱼类追踪、计数和行为分析技术

随着全球人口增长和生态环境退化&#xff0c;传统捕捞已无法满足人类对水产品的需求&#xff0c;水产养殖成为主要的鱼类来源。数字水产养殖利用先进技术和数据驱动方法&#xff0c;对提高生产效率、改善鱼类福利和资源管理具有显著优势。 1 数字水产养殖的重要性 1.1 提高生…

Java web应用性能分析之【prometheus监控指标体系】

Java web应用性能分析之【系统监控工具prometheus】_javaweb服务器性能监控工具-CSDN博客 Java web应用性能分析之【prometheusGrafana监控springboot服务和服务器监控】_grafana 导入 prometheus-CSDN博客 因为篇幅原因&#xff0c;前面没有详细说明Prometheus的监控指标&…

小红书2024LLM论文分享

2024小红书大模型论文分享 BatchEval基于LLM评估LLM生成文本的质量 ACL2024 https://ypw0102.github.io/ 如果文本评价需要多个维度&#xff0c;需要调整BatchEval么&#xff1f; 目前是完整流程走一遍的&#xff0c;因此没有具体考虑细粒度。 评测连续的数据域&#xff0c;S…

使用飞书多维表格实现推送邮件

一、为什么用飞书&#xff1f; 在当今竞争激烈的商业环境中&#xff0c;选择一款高效、智能的办公工具至关重要。了解飞书的朋友应该都知道&#xff0c;飞书的集成能力是很强大的&#xff0c;能够与各种主流的办公软件无缝衔接&#xff0c;实现数据交互&#xff0c;提升工作效…

VAE-pytorch代码

import osimport torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoaderfrom torchvision import transforms, datasets from torchvision.utils import save_imagefrom tqdm import tqdmclass VAE(nn.Module): # 定义VAE模型…

基于盲信号处理的声音分离-基于改进的信息最大化的ICA算法

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大&#xff0c;且输出各个分量之间的相关性最小化&#xff0c;即输出各个分量之间互信息量最小化&#xff0c;其算法的系统框图如图所示。 基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到…

java基于ssm+jsp 弹幕视频网站

1前台首页功能模块 弹幕视频网站&#xff0c;在弹幕视频网站可以查看首页、视频信息、商品信息、论坛信息、我的、跳转到后台、购物车、客服等内容&#xff0c;如图1所示。 图1前台首页界面图 登录&#xff0c;通过登录填写账号、密码等信息进行登录操作&#xff0c;如图2所示…

Sparse4D v1

Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal Fusion 单位&#xff1a;地平线 GitHub&#xff1a;https://github.com/HorizonRobotics/Sparse4D 论文&#xff1a;https://arxiv.org/abs/2211.10581 时间&#xff1a;2022-11 找博主项目讨论方…

【MotionCap】conda 链接缺失的cuda库

conda 安装的环境不知道为啥python 环境里的 一些cuda库是空的要自己链接过去。ln 前面是已有的,后面是要新创建的 ln -s <path to the file/folder to be linked> cuda 有安装 libcublas 已经在cuda中 (base) zhangbin@ubuntu-server:~/miniconda3/envs/ai-mocap/lib/…

ARM芯片架构(RTOS)

前言&#xff1a;笔记韦东山老师的rtos教程&#xff0c;连接放在最后 #ARM介绍 arm芯片属于精简指令集risc&#xff0c;所用的指令比较简单&#xff0c;ARM架构是一种精简指令集&#xff08;RISC&#xff09;架构&#xff0c;广泛应用于移动设备、嵌入式系统、物联网等领域。AR…

40.设计HOOK引擎的好处

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 上一个内容&#xff1a;39.右键弹出菜单管理游戏列表 以 39.右键弹出菜单管理游戏列表 它的代码为基础进行修改 效果图&#xff1a; 实现步骤&#xff1a; 首…

吴恩达2022机器学习专项课程C2W3:2.27 选修_数据倾斜

目录 处理不平衡数据集1.分类需求描述2.计算精确率和召回率 权衡精确率和召唤率1.手动调整阈值2.F1分数 总结 处理不平衡数据集 1.分类需求描述 如果你在处理一个机器学习应用&#xff0c;其中正例和负例的比例&#xff08;用于解决分类问题&#xff09;非常不平衡&#xff0…

图像大小调整(缩放)

尺寸调整前尺寸调整前 1、背景介绍 在深度学习中&#xff0c;将图像调整到固定尺寸&#xff08;如28x28像素&#xff09;的操作是非常常见的&#xff0c;尤其是在处理诸如图像分类、物体检测和图像分割等任务时。这种操作有几个重要原因&#xff1a; 标准化输入&#xff1a;许…

MYSQL 四、mysql进阶 5(InnoDB数据存储结构)

一、数据库的存储结构&#xff1a;页 索引结构给我们提供了高效的索引方式&#xff0c;不过索引信息以及数据记录都是保存在文件上的&#xff0c;确切说时存储在页结构中&#xff0c;另一方面&#xff0c;索引是在存储引擎中实现的&#xff0c;Mysql服务器上的存储引擎负责对表…

当中年男人的觉越来越少 他突然半夜买台电脑(30+岁仿真工程师买电脑心得)

仿真工程师的购机分析&#xff0c;游戏本、移动工作站还是台式机&#xff1f; 认清自己的需求。 现状。现在有一个19年买的华为matebook14、i5第八代低压U&#xff0c;8G内存。还好有SSD当虚拟内存&#xff0c;要不开网页估计都得卡住。媳妇还有台i7、16G的matebook&#xff…

MC进样管PFA塑料管NEPTUNE Plus多接收等离子质谱仪配套管子

PFA进样管可适配Neptune plus多接收器等离子质谱仪&#xff08;MC-ICP-MS&#xff09;&#xff0c;广泛应用于地球化学、核保障、环境科学、金属组学领域&#xff0c;在生物、物理、化学、材料等多个学科的交叉方向也有良好的应用前景。 外观半透明&#xff0c;便于观察管内情…

基于LangChain构建RAG应用

前言 Hello&#xff0c;大家好&#xff0c;我是GISer Liu&#x1f601;&#xff0c;一名热爱AI技术的GIS开发者&#xff0c;上一篇文章中我们详细介绍了RAG的核心思想以及搭建向量数据库的完整过程&#xff1b;&#x1f632; 本文将基于上一篇文章的结果进行开发&#xff0c;主…

最长回文串

描述&#xff1a; 最长回文串 思路&#xff1a; 统计每个字母出现次数&#xff0c;如果是偶数&#xff0c;ret x;如果是存在奇数的话&#xff0c;就可以放在中间&#xff0c;ret 1. 代码&#xff1a; class Solution { public:int hash[200];int longestPalindrome(str…

Elasticsearch8.x聚合查询全面指南:从理论到实战

聚合查询的概念 聚合查询&#xff08;Aggregation Queries&#xff09;是Elasticsearch中用于数据汇总和分析的查询类型。它不同于普通的查询&#xff0c;而是用于执行各种聚合操作&#xff0c;如计数、求和、平均值、最小值、最大值、分组等。 聚合查询的分类 分桶聚合&…