C# YoloV8 模型效果验证工具(OnnxRuntime+ByteTrack推理)

C# YoloV8 模型效果验证工具(OnnxRuntime+ByteTrack推理)

目录

效果

项目

代码

下载


效果

模型效果验证工具

项目

代码

using ByteTrack;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Imaging;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;


namespace C__yolov8_OnnxRuntime_ByteTrack_Demo
{
    public partial class Form2 : Form
    {
        public Form2()
        {
            InitializeComponent();
        }

        string imgFilter = "图片|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

        YoloV8 yoloV8;
        Mat image;

        string image_path = "";
        string model_path;

        string video_path = "";
        string videoFilter = "视频|*.mp4;*.avi;*.dav";
        VideoCapture vcapture;
        VideoWriter vwriter;
        bool saveDetVideo = false;
        ByteTracker tracker;

        /// <summary>
        /// 单图推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button2_Click(object sender, EventArgs e)
        {

            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            Application.DoEvents();

            image = new Mat(image_path);

            List<DetectionResult> detResults = yoloV8.Detect(image);

            //绘制结果
            Mat result_image = image.Clone();
            foreach (DetectionResult r in detResults)
            {
                string info = $"{r.Class}:{r.Confidence:P0}";
                //绘制
                Cv2.PutText(result_image, info, new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);

            }

            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = yoloV8.DetectTime();

            button2.Enabled = true;

        }

        /// <summary>
        /// 窗体加载,初始化
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "test/dog.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            model_path = "model/yolov8n.onnx";

            yoloV8 = new YoloV8(model_path, "model/lable.txt");
        }

        /// <summary>
        /// 选择图片
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button1_Click_1(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = imgFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);

            textBox1.Text = "";
            pictureBox2.Image = null;
        }

        /// <summary>
        /// 选择视频
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button4_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = videoFilter;
            ofd.InitialDirectory = Application.StartupPath + "\\test";
            if (ofd.ShowDialog() != DialogResult.OK) return;

            video_path = ofd.FileName;

            textBox1.Text = video_path;
            //pictureBox1.Image = null;
            //pictureBox2.Image = null;

            //button3_Click(null, null);

        }

        /// <summary>
        /// 视频推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            if (video_path == "")
            {
                MessageBox.Show("请先选择视频!");
                return;
            }

            textBox1.Text = "开始检测";

            Application.DoEvents();

            Thread thread = new Thread(new ThreadStart(VideoDetection));

            thread.Start();
            thread.Join();

            textBox1.Text = "检测完成!";
        }

        void VideoDetection()
        {
            vcapture = new VideoCapture(video_path);
            if (!vcapture.IsOpened())
            {
                MessageBox.Show("打开视频文件失败");
                return;
            }

            tracker = new ByteTracker((int)vcapture.Fps, 200);

            Mat frame = new Mat();
            List<DetectionResult> detResults;

            // 获取视频的fps
            double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
            // 计算等待时间(毫秒)
            int delay = (int)(1000 / videoFps);
            Stopwatch _stopwatch = new Stopwatch();

            if (checkBox1.Checked)
            {
                vwriter = new VideoWriter("out.mp4", FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));
                saveDetVideo = true;
            }
            else
            {
                saveDetVideo = false;
            }

            Cv2.NamedWindow("DetectionResult 按下ESC,退出", WindowFlags.Normal);
            Cv2.ResizeWindow("DetectionResult 按下ESC,退出", vcapture.FrameWidth / 2, vcapture.FrameHeight / 2);

            while (vcapture.Read(frame))
            {
                if (frame.Empty())
                {
                    MessageBox.Show("读取失败");
                    return;
                }
                Mat mat_temp = frame.Clone();
                _stopwatch.Restart();

                delay = (int)(1000 / videoFps);

                detResults = yoloV8.Detect(frame);

                //绘制结果
                //foreach (DetectionResult r in detResults)
                //{
                //    Cv2.PutText(frame, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                //    Cv2.Rectangle(frame, r.Rect, Scalar.Red, thickness: 2);
                //}

                Cv2.PutText(frame, "preprocessTime:" + yoloV8.preprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 30), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "inferTime:" + yoloV8.inferTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 70), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "postprocessTime:" + yoloV8.postprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 110), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "totalTime:" + yoloV8.totalTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 150), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "video fps:" + videoFps.ToString("F2"), new OpenCvSharp.Point(10, 190), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "det fps:" + yoloV8.detFps.ToString("F2"), new OpenCvSharp.Point(10, 230), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

                List<Track> track = new List<Track>();
                Track temp;
                foreach (DetectionResult r in detResults)
                {
                    RectBox _box = new RectBox(r.Rect.X, r.Rect.Y, r.Rect.Width, r.Rect.Height);
                    temp = new Track(_box, r.Confidence, ("label", r.ClassId), ("name", r.Class));
                    track.Add(temp);
                }

                var trackOutputs = tracker.Update(track);

                foreach (var t in trackOutputs)
                {
                    int x = (int)t.RectBox.X;
                    int y = (int)t.RectBox.Y;
                    int width = (int)t.RectBox.Width;
                    int height = (int)t.RectBox.Height;

                    if (x < 0)
                    {
                        x = 0;
                    }

                    if (y < 0)
                    {
                        y = 0;
                    }

                    if (x + width > mat_temp.Width)
                    {
                        width = mat_temp.Width - x;
                    }

                    if (y + height > mat_temp.Height)
                    {
                        height = mat_temp.Height - y;
                    }

                    Rect rect = new Rect(x, y, width, height);

                    string txt = $"{t["name"]}-{t.TrackId}:{t.Score:P0}";
                    
                    //if (t["name"].ToString() != "Plate" && t["name"].ToString() != "Person")
                    //{
                    //    Mat mat_car = new Mat(mat_temp, rect);
                    //    KeyValuePair<string, float> cls = yoloV8_Cls.Detect(mat_car);
                    //    mat_car.Dispose();
                    //    txt += $" {cls.Key}:{cls.Value:P0}";
                    //}

                    //string txt = $"{t["name"]}-{t.TrackId}";
                    Cv2.PutText(frame, txt, new OpenCvSharp.Point(rect.TopLeft.X, rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                    Cv2.Rectangle(frame, rect, Scalar.Red, thickness: 2);
                }
                mat_temp.Dispose();


                if (saveDetVideo)
                {
                    vwriter.Write(frame);
                }

                Cv2.ImShow("DetectionResult 按下ESC,退出", frame);

                // for test
                // delay = 1;
                delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
                if (delay <= 0)
                {
                    delay = 1;
                }
                //Console.WriteLine("delay:" + delay.ToString()) ;
                if (Cv2.WaitKey(delay) == 27 || Cv2.GetWindowProperty("DetectionResult 按下ESC,退出", WindowPropertyFlags.Visible) < 1.0)
                {
                    Cv2.DestroyAllWindows();
                    vcapture.Release();
                    break;
                }
            }

            Cv2.DestroyAllWindows();
            vcapture.Release();
            if (saveDetVideo)
            {
                vwriter.Release();
            }

        }

        string model_path1 = "";
        string model_path2 = "";
        string onnxFilter = "onnx模型|*.onnx;";

        private void button5_Click(object sender, EventArgs e)
        {
            if (video_path == "")
            {
                MessageBox.Show("请先选择视频!");
                return;
            }

            if (model_path1 == "")
            {
                MessageBox.Show("选择模型1");
                OpenFileDialog ofd = new OpenFileDialog();
                ofd.Filter = onnxFilter;
                ofd.InitialDirectory = Application.StartupPath + "\\model";
                if (ofd.ShowDialog() != DialogResult.OK) return;
                model_path1 = ofd.FileName;
            }

            if (model_path2 == "")
            {
                MessageBox.Show("选择模型2");
                OpenFileDialog ofd1 = new OpenFileDialog();
                ofd1.Filter = onnxFilter;
                ofd1.InitialDirectory = Application.StartupPath + "\\model";
                if (ofd1.ShowDialog() != DialogResult.OK) return;
                model_path2 = ofd1.FileName;
            }

            textBox1.Text = "开始检测";
            Application.DoEvents();

            Task task = new Task(() =>
            {
                VideoCapture vcapture = new VideoCapture(video_path);
                if (!vcapture.IsOpened())
                {
                    MessageBox.Show("打开视频文件失败");
                    return;
                }

                YoloV8_Compare yoloV8 = new YoloV8_Compare(model_path1, model_path2, "model/lable.txt");

                Mat frame = new Mat();

                // 获取视频的fps
                double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
                // 计算等待时间(毫秒)
                int delay = (int)(1000 / videoFps);
                Stopwatch _stopwatch = new Stopwatch();

                Cv2.NamedWindow("DetectionResult 按下ESC,退出", WindowFlags.Normal);
                Cv2.ResizeWindow("DetectionResult 按下ESC,退出", vcapture.FrameWidth, vcapture.FrameHeight / 2);

                while (vcapture.Read(frame))
                {
                    if (frame.Empty())
                    {
                        MessageBox.Show("读取失败");
                        return;
                    }

                    _stopwatch.Restart();

                    delay = (int)(1000 / videoFps);

                    Mat result = yoloV8.Detect(frame, videoFps.ToString("F2"));

                    Cv2.ImShow("DetectionResult 按下ESC,退出", result);

                    // for test
                    // delay = 1;
                    delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
                    if (delay <= 0)
                    {
                        delay = 1;
                    }
                    //Console.WriteLine("delay:" + delay.ToString()) ;
                    // 如果按下ESC或点击关闭,退出循环
                    if (Cv2.WaitKey(delay) == 27 || Cv2.GetWindowProperty("DetectionResult 按下ESC,退出", WindowPropertyFlags.Visible) < 1.0)
                    {
                        Cv2.DestroyAllWindows();
                        vcapture.Release();
                        break;
                    }
                }

                textBox1.Invoke(new Action(() =>
                {
                    textBox1.Text = "检测结束!";

                }));

            });
            task.Start();

        }

        //保存
        SaveFileDialog sdf = new SaveFileDialog();
        private void button6_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }

        }

        /// <summary>
        /// 选择模型
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button7_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = onnxFilter;
            ofd.InitialDirectory = Application.StartupPath + "\\model";
            if (ofd.ShowDialog() != DialogResult.OK) return;
            model_path = ofd.FileName;
            yoloV8 = new YoloV8(model_path, "model/lable.txt");

        }
    }

}

using ByteTrack;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Imaging;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;


namespace C__yolov8_OnnxRuntime_ByteTrack_Demo
{
    public partial class Form2 : Form
    {
        public Form2()
        {
            InitializeComponent();
        }

        string imgFilter = "图片|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

        YoloV8 yoloV8;
        Mat image;

        string image_path = "";
        string model_path;

        string video_path = "";
        string videoFilter = "视频|*.mp4;*.avi;*.dav";
        VideoCapture vcapture;
        VideoWriter vwriter;
        bool saveDetVideo = false;
        ByteTracker tracker;

        /// <summary>
        /// 单图推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button2_Click(object sender, EventArgs e)
        {

            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            Application.DoEvents();

            image = new Mat(image_path);

            List<DetectionResult> detResults = yoloV8.Detect(image);

            //绘制结果
            Mat result_image = image.Clone();
            foreach (DetectionResult r in detResults)
            {
                string info = $"{r.Class}:{r.Confidence:P0}";
                //绘制
                Cv2.PutText(result_image, info, new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);

            }

            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = yoloV8.DetectTime();

            button2.Enabled = true;

        }

        /// <summary>
        /// 窗体加载,初始化
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "test/dog.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            model_path = "model/yolov8n.onnx";

            yoloV8 = new YoloV8(model_path, "model/lable.txt");
        }

        /// <summary>
        /// 选择图片
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button1_Click_1(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = imgFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);

            textBox1.Text = "";
            pictureBox2.Image = null;
        }

        /// <summary>
        /// 选择视频
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button4_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = videoFilter;
            ofd.InitialDirectory = Application.StartupPath + "\\test";
            if (ofd.ShowDialog() != DialogResult.OK) return;

            video_path = ofd.FileName;

            textBox1.Text = video_path;
            //pictureBox1.Image = null;
            //pictureBox2.Image = null;

            //button3_Click(null, null);

        }

        /// <summary>
        /// 视频推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            if (video_path == "")
            {
                MessageBox.Show("请先选择视频!");
                return;
            }

            textBox1.Text = "开始检测";

            Application.DoEvents();

            Thread thread = new Thread(new ThreadStart(VideoDetection));

            thread.Start();
            thread.Join();

            textBox1.Text = "检测完成!";
        }

        void VideoDetection()
        {
            vcapture = new VideoCapture(video_path);
            if (!vcapture.IsOpened())
            {
                MessageBox.Show("打开视频文件失败");
                return;
            }

            tracker = new ByteTracker((int)vcapture.Fps, 200);

            Mat frame = new Mat();
            List<DetectionResult> detResults;

            // 获取视频的fps
            double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
            // 计算等待时间(毫秒)
            int delay = (int)(1000 / videoFps);
            Stopwatch _stopwatch = new Stopwatch();

            if (checkBox1.Checked)
            {
                vwriter = new VideoWriter("out.mp4", FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));
                saveDetVideo = true;
            }
            else
            {
                saveDetVideo = false;
            }

            Cv2.NamedWindow("DetectionResult 按下ESC,退出", WindowFlags.Normal);
            Cv2.ResizeWindow("DetectionResult 按下ESC,退出", vcapture.FrameWidth / 2, vcapture.FrameHeight / 2);

            while (vcapture.Read(frame))
            {
                if (frame.Empty())
                {
                    MessageBox.Show("读取失败");
                    return;
                }
                Mat mat_temp = frame.Clone();
                _stopwatch.Restart();

                delay = (int)(1000 / videoFps);

                detResults = yoloV8.Detect(frame);

                //绘制结果
                //foreach (DetectionResult r in detResults)
                //{
                //    Cv2.PutText(frame, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                //    Cv2.Rectangle(frame, r.Rect, Scalar.Red, thickness: 2);
                //}

                Cv2.PutText(frame, "preprocessTime:" + yoloV8.preprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 30), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "inferTime:" + yoloV8.inferTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 70), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "postprocessTime:" + yoloV8.postprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 110), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "totalTime:" + yoloV8.totalTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 150), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "video fps:" + videoFps.ToString("F2"), new OpenCvSharp.Point(10, 190), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "det fps:" + yoloV8.detFps.ToString("F2"), new OpenCvSharp.Point(10, 230), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

                List<Track> track = new List<Track>();
                Track temp;
                foreach (DetectionResult r in detResults)
                {
                    RectBox _box = new RectBox(r.Rect.X, r.Rect.Y, r.Rect.Width, r.Rect.Height);
                    temp = new Track(_box, r.Confidence, ("label", r.ClassId), ("name", r.Class));
                    track.Add(temp);
                }

                var trackOutputs = tracker.Update(track);

                foreach (var t in trackOutputs)
                {
                    int x = (int)t.RectBox.X;
                    int y = (int)t.RectBox.Y;
                    int width = (int)t.RectBox.Width;
                    int height = (int)t.RectBox.Height;

                    if (x < 0)
                    {
                        x = 0;
                    }

                    if (y < 0)
                    {
                        y = 0;
                    }

                    if (x + width > mat_temp.Width)
                    {
                        width = mat_temp.Width - x;
                    }

                    if (y + height > mat_temp.Height)
                    {
                        height = mat_temp.Height - y;
                    }

                    Rect rect = new Rect(x, y, width, height);

                    string txt = $"{t["name"]}-{t.TrackId}:{t.Score:P0}";
                    
                    //if (t["name"].ToString() != "Plate" && t["name"].ToString() != "Person")
                    //{
                    //    Mat mat_car = new Mat(mat_temp, rect);
                    //    KeyValuePair<string, float> cls = yoloV8_Cls.Detect(mat_car);
                    //    mat_car.Dispose();
                    //    txt += $" {cls.Key}:{cls.Value:P0}";
                    //}

                    //string txt = $"{t["name"]}-{t.TrackId}";
                    Cv2.PutText(frame, txt, new OpenCvSharp.Point(rect.TopLeft.X, rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                    Cv2.Rectangle(frame, rect, Scalar.Red, thickness: 2);
                }
                mat_temp.Dispose();


                if (saveDetVideo)
                {
                    vwriter.Write(frame);
                }

                Cv2.ImShow("DetectionResult 按下ESC,退出", frame);

                // for test
                // delay = 1;
                delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
                if (delay <= 0)
                {
                    delay = 1;
                }
                //Console.WriteLine("delay:" + delay.ToString()) ;
                if (Cv2.WaitKey(delay) == 27 || Cv2.GetWindowProperty("DetectionResult 按下ESC,退出", WindowPropertyFlags.Visible) < 1.0)
                {
                    Cv2.DestroyAllWindows();
                    vcapture.Release();
                    break;
                }
            }

            Cv2.DestroyAllWindows();
            vcapture.Release();
            if (saveDetVideo)
            {
                vwriter.Release();
            }

        }

        string model_path1 = "";
        string model_path2 = "";
        string onnxFilter = "onnx模型|*.onnx;";

        private void button5_Click(object sender, EventArgs e)
        {
            if (video_path == "")
            {
                MessageBox.Show("请先选择视频!");
                return;
            }

            if (model_path1 == "")
            {
                MessageBox.Show("选择模型1");
                OpenFileDialog ofd = new OpenFileDialog();
                ofd.Filter = onnxFilter;
                ofd.InitialDirectory = Application.StartupPath + "\\model";
                if (ofd.ShowDialog() != DialogResult.OK) return;
                model_path1 = ofd.FileName;
            }

            if (model_path2 == "")
            {
                MessageBox.Show("选择模型2");
                OpenFileDialog ofd1 = new OpenFileDialog();
                ofd1.Filter = onnxFilter;
                ofd1.InitialDirectory = Application.StartupPath + "\\model";
                if (ofd1.ShowDialog() != DialogResult.OK) return;
                model_path2 = ofd1.FileName;
            }

            textBox1.Text = "开始检测";
            Application.DoEvents();

            Task task = new Task(() =>
            {
                VideoCapture vcapture = new VideoCapture(video_path);
                if (!vcapture.IsOpened())
                {
                    MessageBox.Show("打开视频文件失败");
                    return;
                }

                YoloV8_Compare yoloV8 = new YoloV8_Compare(model_path1, model_path2, "model/lable.txt");

                Mat frame = new Mat();

                // 获取视频的fps
                double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
                // 计算等待时间(毫秒)
                int delay = (int)(1000 / videoFps);
                Stopwatch _stopwatch = new Stopwatch();

                Cv2.NamedWindow("DetectionResult 按下ESC,退出", WindowFlags.Normal);
                Cv2.ResizeWindow("DetectionResult 按下ESC,退出", vcapture.FrameWidth, vcapture.FrameHeight / 2);

                while (vcapture.Read(frame))
                {
                    if (frame.Empty())
                    {
                        MessageBox.Show("读取失败");
                        return;
                    }

                    _stopwatch.Restart();

                    delay = (int)(1000 / videoFps);

                    Mat result = yoloV8.Detect(frame, videoFps.ToString("F2"));

                    Cv2.ImShow("DetectionResult 按下ESC,退出", result);

                    // for test
                    // delay = 1;
                    delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
                    if (delay <= 0)
                    {
                        delay = 1;
                    }
                    //Console.WriteLine("delay:" + delay.ToString()) ;
                    // 如果按下ESC或点击关闭,退出循环
                    if (Cv2.WaitKey(delay) == 27 || Cv2.GetWindowProperty("DetectionResult 按下ESC,退出", WindowPropertyFlags.Visible) < 1.0)
                    {
                        Cv2.DestroyAllWindows();
                        vcapture.Release();
                        break;
                    }
                }

                textBox1.Invoke(new Action(() =>
                {
                    textBox1.Text = "检测结束!";

                }));

            });
            task.Start();

        }

        //保存
        SaveFileDialog sdf = new SaveFileDialog();
        private void button6_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }

        }

        /// <summary>
        /// 选择模型
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button7_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = onnxFilter;
            ofd.InitialDirectory = Application.StartupPath + "\\model";
            if (ofd.ShowDialog() != DialogResult.OK) return;
            model_path = ofd.FileName;
            yoloV8 = new YoloV8(model_path, "model/lable.txt");

        }
    }

}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/750542.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ACC:Automatic ECN Tuning for High-Speed Datacenter Networks 相关知识点介绍(一)

目录 ACC&#xff08;Adaptive Congestion Control&#xff09; 总结 结合 ACC 和 ECN ECN ECN&#xff08;Explicit Congestion Notification&#xff09; 静态 ECN 动态 ECN 对比 总结 FCT——flow completion time 具体解释 小鼠流和大象流 小鼠流&#xff08;…

2024百度之星第二场-小度的01串

补题链接&#xff1a; 码蹄集 一道经典线段树板子题。 区间修改01置换&#xff0c;区间查询子串权值。 唯一区别&#xff0c;权值要求的是相邻字符都不同所需修改的最小字符个数。 我们在线段树节点上分别维护当前连续区间&#xff1a; 奇数位是0的个数&#xff08;j0&…

ROS1通信机制——以topic为例

ROS1 的通信机制 ROS1是一个分布式框架&#xff0c;为用户提供多节点&#xff08;进程&#xff09;之间的通信服务。 ROS1通信时有一个中心节点&#xff08;ROS Master&#xff09;&#xff0c;进行信息匹配等工作。 ROS1 的话题通信机制 通信链接&#xff1a;XML/RPC 信息传…

YOLOV8图像分割预测后输出mask图

训练一个yolov8后&#xff0c;用官方的预测脚本一般是&#xff1a; results model.predict(img_path, saveTrue, save_diroutput_folder) 运行此代码会直接在run里面生成一个文件夹&#xff0c;保存预测图像。如果要获取分割后的mask点&#xff0c;或mask的轮廓点&#xff0…

WIFI各版本的带宽

带宽的定义&#xff1a; 带宽在网络领域通常指信道带宽&#xff0c;即信号在频谱中占用的频宽&#xff0c;单位是MHz&#xff08;兆赫&#xff09;。在无线通信中&#xff0c;带宽越宽&#xff0c;能够传输的数据量越大&#xff0c;因此信道带宽直接影响着数据传输速率。WiFi标…

SKYDROID-C12—— 让美景近在眼前

C12是一款小型高清双光吊舱&#xff0c;使用新一代影像芯片&#xff0c;搭配高清无畸变摄像头&#xff0c;有效像素达到500万&#xff0c;拥有强悍的2K视频录制和拍照能力&#xff0c;支持数字变倍&#xff0c;随时随地捕捉清晰的图像&#xff0c;让远处美景近在眼前。

Clickhouse 的性能优化实践总结

文章目录 前言性能优化的原则数据结构优化内存优化磁盘优化网络优化CPU优化查询优化数据迁移优化 前言 ClickHouse是一个性能很强的OLAP数据库&#xff0c;性能强是建立在专业运维之上的&#xff0c;需要专业运维人员依据不同的业务需求对ClickHouse进行有针对性的优化。同一批…

【Android11】开机启动日志捕捉服务

一、前言 制作这个功能的原因是客户想要自动的记录日志中的报错和警告到设备的内存卡里面。虽然开发者模式中有一个“bug report” 会在/data/user_de/0/com.android.shell/files/bugreports/目录下生成一个zip包记录了日志。但是客户觉得这个日志很难获取到他们需要的信息&am…

Transformer教程之神经网络和深度学习基础

在当今的人工智能领域&#xff0c;Transformer已经成为了一个热门的词汇。它不仅在自然语言处理&#xff08;NLP&#xff09;领域取得了巨大的成功&#xff0c;还在计算机视觉等其他领域展现出了强大的潜力。然而&#xff0c;要真正理解Transformer&#xff0c;我们首先需要扎实…

希喂生骨肉冻干值得入手吗?拯救瘦弱、增强抵抗力最强主食测评!

希喂生骨肉冻干值得入手吗&#xff1f;很多小姐妹觉着自家猫咪太瘦了、体质不咋好&#xff0c;换季还敏感、掉毛、不吃东西&#xff0c;听说生骨肉冻干好吸收、营养好&#xff0c;可以改善体质、拯救瘦弱、增强抵抗力&#xff0c;为了图省事&#xff0c;开始盲入生骨肉冻干&…

Linux—进程与计划管理

目录 一、程序 二、进程 1、什么是进程 2、进程的特点 3、进程、线程、携程 3.1、进程 3.2、线程 3.3、携程 三、查看进程信息 1、ps -aux 2、ps -elf 3、top ​3.2、输出内容详解 3.2.1、输出第一部分解释 3.2.2、输出第二部分解释 4、pgrep 5、pstree 四、进…

The ‘textprediction‘ attribute will be removed in the future

页面标签不展示&#xff0c;明明是复制的&#xff0c;反复检查&#xff0c;眼睛都看瞎了&#xff0c;也没找到&#xff0c;最后还是看后台报错&#xff0c;The textprediction attribute will be removed in the future说什么要被废弃&#xff0c;但是好好的标签怎么会无缘无辜…

C语言 | Leetcode C语言题解之第191题位1的个数

题目&#xff1a; 题解&#xff1a; int hammingWeight(uint32_t n) {int ret 0;while (n) {n & n - 1;ret;}return ret; }

2024最新特种设备(锅炉作业)题库分享。

1.锅炉蒸发量大小是由(  )决定的。 A.压力的高低 B.受压元件多少 C.受热面积大小 答案:C 2.哪项不是自然循环的故障?&#xff08; &#xff09; A.停滞 B.倒流 C.下降管带汽 D.上升管带汽 答案:D 3.水冷壁被现代大型锅炉广泛采用的是(  )。 A.光管水冷壁 B.膜…

龙迅LT8711V TYPE-CDP 1.2转VGA芯片,内置MCU,成熟批量产品

龙迅LT8711V描述&#xff1a; LT8711V是一种高性能的Type-C/DP1.2到VGA转换器&#xff0c;设计用于连接USB Type-C源或DP1.2源到VGA接收器。LT8711V集成了一个DP1.2兼容的接收器&#xff0c;和一个高速三通道视频DAC。此外&#xff0c;还包括两个CC控制器&#xff0c;用于CC通…

SherlockChain:基于高级AI实现的智能合约安全分析框架

关于SherlockChain SherlockChain是一款功能强大的智能合约安全分析框架&#xff0c;该工具整合了Slither工具&#xff08;一款针对智能合约的安全工具&#xff09;的功能&#xff0c;并引入了高级人工智能模型&#xff0c;旨在辅助广大研究人员针对Solidity、Vyper和Plutus智…

个人支付系统实现

基础首页&#xff1a; 订单&#xff1a; 智能售卡系统 基于webmanworkerman开发 禁用函数检查 使用这个脚本检查是否有禁用函数。命令行运行curl -Ss https://www.workerman.net/check | php 如果有提示Function 函数名 may be disabled. Please check disable_functions in …

显卡GTX与RTX有什么区别?哪一个更适合玩游戏?

游戏发烧友们可能对游戏显卡并不陌生&#xff0c;它直接关系到游戏画面的流畅度、细腻程度和真实感。在众多显卡品牌中&#xff0c;英伟达的GTX和RTX系列显卡因其出色的性能而备受关注。 一、GTX与RTX的区别 架构差异 GTX系列显卡采用的是Pascal架构&#xff0c;这是英伟达在…

Redis 7.x 系列【7】数据类型之列表(List)

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Redis 版本 7.2.5 源码地址&#xff1a;https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 常用命令2.1 RPUSH2.2 LPUSH2.3 LRANGE2.4 LINDEX2.6 LREM2.7 LLEN2.8 LPOP…

AGI 远不止 ChatGPT!一文入门 AGI 通识及应用开发_通向agi之路网站使用什么开发的网站

AI 大语言模型进入爆发阶段 2022 年 12 月 ChatGPT 突然爆火&#xff0c;原因是其表现出来的智能化已经远远突破了我们的常规认知。虽然其呈现在使用者面前仅仅只是一个简单的对话问答形式&#xff0c;但是它的内容化水平非常强大&#xff0c;甚至在某些方面已经超过人类了&am…