AGI 远不止 ChatGPT!一文入门 AGI 通识及应用开发_通向agi之路网站使用什么开发的网站

AI 大语言模型进入爆发阶段

2022 年 12 月 ChatGPT 突然爆火,原因是其表现出来的智能化已经远远突破了我们的常规认知。虽然其呈现在使用者面前仅仅只是一个简单的对话问答形式,但是它的内容化水平非常强大,甚至在某些方面已经超过人类了,这是人工智能板块的重大突破。

近半年来,整个行业都在致力于研发和应用大型模型。这涉及到算力的提升、大型模型算法的优化以及相关语料和数据的准备。行业对此非常关注,各个参与者都铆足干劲,特别是一些大型企业纷纷下水,担心被 AI 浪潮拍在沙滩上。

在这张图中,我们可以看到一些主要的玩家,比如 Meta(即 Facebook)、OpenAI 和谷歌,以及国内的华为、阿里巴巴和百度。尤其是在大型模型领域,它们都在做相应的投入和研发。最近,有一个名为 Stable Diffusion 的技术非常令人震撼。它可以让你无限地放大和缩小一张图片,甚至将其放大到地球的大小,这对整个行业都是一个巨大的挑战。

在这里插入图片描述

另外值得一提的是 Meta,两年前,Facebook 将其名称改为 Meta,并宣布将全力发展元宇宙。但是为什么元宇宙还没有崛起呢?因为元宇宙需要人们用工具去创造其中的 3D 内容。但是现在,如果将 Stable Diffusion 技术与元宇宙技术结合起来,所有的场景都不需要手动创造了。这是非常令人震撼的,也可能会推动元宇宙的爆发。因为在这之前,元宇宙最大的瓶颈就是内容。如果人工智能能够与之很好地结合并生成内容,对元宇宙的推动将是非常巨大的。所以,我们可以无限地想象这个技术将如何改变我们的生活。

什么是大语言模型?

大语言模型是 AI 中的一个重要组成部分,它主要用于生成内容。我们可以通过这个模型给定一段文字,然后生成相应的文字、图片或图生图,以及将文字转换为声音或视频等等。这个模型的架构被称为 Transformer,它是一种深层次的生成式模型。在卷积神经网络中,有许多层和参数,通过降维计算和权重来生成每个节点的可能性。虽然理解这个模型可能对于数学不太好的人来说有些复杂,但我们可以大致了解它的工作原理、功能和优势,以便在后续的应用开发中打下基础。

总结下来大模型其实就是三块大的能力:自然语言理解与生成,推理能力以及通识能力。*

首先最重要的是自然语言的理解能力。在过去,我们经常进行各种搜索,包括在电商网站上进行搜索。当你在输入框中输入想要购买的物品,比如电脑,系统会给你返回一大堆相关的结果。这种搜索的本质是什么呢?其实它是通过给每个商品打上标签的方式进行的,比如只要是电脑,系统就会给它打上电脑的标签。当你输入电脑时,系统会命中所有带有电脑标签的商品,然后给你返回搜索结果。所以从本质上说,这种搜索是基于你的输入进行分词和命中,而没有理解你的意图。

但现在,自然语言理解的技术已经得到了很大的进步,在搜索层面上可以实现更多的功能。我们可能都尝试过 ChatGPT、文心一言等等,当你输入一段话时,它会给你返回一系列相关的信息。这是因为它真正地理解了你的语言含义,理解了你的意图,然后才进行相应的操作。所以在搜索方面,实现这种真正的理解并提供相关结果是可能的。

比如你要去购买电脑,你可以对着 AI 输入“我是一个程序员,平时主要用来写 Python 程序,现在要购买一台 1 万元左右的电脑”,这是会自动给你推荐符合的商品,这就是体验方式的不一样。这个模型他理解了你的需求,然后再去完成特定的任务。

第二个很重要的是推理能力。同样是上文买电脑的例子,我只是描述了我的职业属性以及使用需求,而大语言模型会根据我提供的信息来推理出我需要购买电脑或者电脑的配件。这是它在基于我的语言理解去做的推理。

很典型的一个例子是 ChatGPT-4 发布时的一个举例,将一个有气球的图片传给 ChatGPT,这时候你问 ChatGPT

“如果我把气球的绳子剪断会怎样?”

“气球会飞走”

在这里插入图片描述

对于人类来说,这些回答很正常,但对于机器来说却是令人震撼的,这意味着 AI 已经能够理解物理世界的一些现象。

例如,当给 AI 展示一张烧红的铁的图片,并问它如果用手去碰会怎样,它能回答“你要当心受伤”。这个回答展示了 AI 的通识能力,它知道烧红的铁温度很高,然后进行推理得出碰到它会受伤的结论,并知道人的手不能碰高温物体。这些都属于通识知识,对我们来说很基本。但在这个大型模型出现之前,这个问题一直困扰着科学界很长时间,即使像 AlphaGo 这样的强大 AI 也不知道烧红的铁不能用手碰。

但现在这个问题已经得到解决。

大语言模型的核心要素

算法和模型是区分大语言模型研发的核心要素。算法和模型影响的模型丰富度、模型准确性、能力涌现等都成为评价大语言模型优劣的核心指标。

目前 LLM 市场有三大方向,分别是 OpenAI、Google 和 Meta。

ChatGPT 的回答更注重模拟人类表达,因此在准确性方面可能会有一定欠缺,有时会出现所谓的“一本正经的胡说八道”,这在专业术语中称为“幻觉”。相比之下,Google 追求 100%的准确性,所以它的训练更加困难。这也解释了为什么 OpenAI 先出现并且更快流行,因为它的回答相对更巧妙,难度没有那么大。

而 Meta 的 LLaMA 则是另一条完全不同的路线,它是完全开源并且可以商用的,因此围绕这一个模型会出现成百上千的模型,很多个人或者大厂都会基于这个模型进行一定的改进,比如 ChatGLM 等等。

在这里插入图片描述

如何构建大语言模型

大模型的本质除了是 Transformer 算法,它还需要进行数据训练。这与人类类似,孩子出生后就自然拥有了算力,而随着大脑中的神经元不断增长,算力也会增强。

无论是对于人类还是对于大模型来说,学习都是一个过程。实质上,对于大模型来说,学习的过程就是消耗数据和语料的过程。在训练中,所有的数据都被称为语量。

将大语言模型从一个 Transformer 算法训练成一个类似 ChatGPT 的模型需要经过三步:预训练、指令微调和 RLHF。

预训练是指进行大量的无监督学习,这个概念可以用一个例子来解释。就像训练一个鹦鹉一样,你给它一个开着的电视,让它去看,不管电视上放什么内容,只要鹦鹉看着就好。经过一段时间,鹦鹉就会学会很多话。当然,这种训练资料不是完全随机,还是会进行一定的选择。

指令微调是一种技术,通过向模型提供特定的指令或约束来进一步调整模型的行为和生成结果。通常用于去除预训练过程中不安全数据,这些数据包括但不限于黄赌毒等等违法内容。AI 在面对关于违法行为的问题时,会避免回答。同时,指令微调还涉及一些伦理问题,它会尽量排除对人类有害的内容。

然而,传统数据库中可以查找到有害数据的位置,但在大模型中,由于存储的内容太多,不知道具体位置。因此,无法通过穷举的方式检查出所有有害内容,特别是在开源大模型中,隐藏的有害内容更难察觉,需要更加小心谨慎。

RLHF 是 Reinforcement Learning From Human Feedback 的缩写,意为从人类反馈中进行强化学习。这是整个过程的最后一步,引入专家或其他人在不同时间点问同样的问题,观察回答的差异,尽管可能有些微差别,但意思可能是一样的。然后需要评估回答,选择最好的回答,并给予相应的权重。这实际上是一个强化学习的过程。

在这里插入图片描述

大模型时代下企业应用痛点

随着进入大模型时代,越来越多的企业将加入这一浪潮,现有的几家独大的局面必将很快被打破。在这个时代,企业应用发展同样面临着众多挑战。

例如 ChatGPT 在通识领域表现出很强的能力,这是因为 ChatGPT 的语料来源于公开网络,所以它会成长为通识领域的领先选手。

然而,每个行业最专业的资料都是在企业或行业协会的私域中,不对外公开的。所以 ChatGPT 在回复中经常会存在事实性错误,部分原因就是这些特定的行业机密是无法在公有网络中获取的。这些行业协会或企业可以使用自己的数据来训练模型,从而成为该领域的专家,专注解决特定问题。可以预见的是,未来将会有各种大模型涌现,如医生模型、投资模型、生产制造模型等。我们可以想象将各种大模型与各个行业结合,从而对传统应用进行重构和升级,实现更好的效果。

另一方面是企业应用面临着数据和信息泄露的风险。由于 AI 大模型的应用无法签订保密协议,无法保证企业数据的安全性,也无法保证内容不会外流。这给企业带来了一定的安全隐患和控制风险。

大模型究竟能做什么

大模型应用可以轻松生成文字,比如广告文案、客服等。虽然目前大多数应用将其用于客服问答,但它的能力远不止于此,特别是在企业场景中,它具有强大的推理和分析能力。例如在自动驾驶领域,人工智能也发挥了重要作用,但目前仍存在 100%正确性的问题,因此智能驾驶还不能完全取代人类控制。然而,一旦突破了这一问题,将对整个行业产生颠覆性的影响,释放出与蒸汽机一样重要的生产力,实现机器设备的无人驾驶和操控。

我们现在才刚进入大模型时代,更多的应用可能其实还需要不断地去尝试挖掘。

AI 企业应用开发

一、开发工具及资源

目前我们已经拥有了很多模型,回到我们的本质,我们要开发一些应用,更重要的是如何去运用它们。现在业界有一些框架、思路和工具来开发这些 AI 应用。在这个过程中,我们可以看到有一些层次顺序。最底层是模型的能力,它是不可或缺的,而它的算力则是由 CPU 支撑,在这之上还有一些框架。

脚手架

AI 应用脚手架软件是一种用于构建和部署 AI 应用的工具。它提供了一个基本框架,帮助开发者快速搭建 AI 应用的基础结构。

很火的脚手架如 AutoGPT 和 LangChain 其实都采用了同一种代理思路,即基于"思维链"的循环往复过程。当面对复杂任务时,大模型具备拆解能力,将任务拆解为小任务,并提前包装好 API 工具,让模型知道每个 API 的功能。整个过程相当于自动化的步骤,模型会根据任务的拆解和工具的匹配来完成相应的任务。

向量数据库

在传统的应用中,我们使用了 Claude 框架和 Java 语言。然而,这些还不够,我们还需要记忆体,也就是关系型数据库。在 AI 应用中,它也有相应的记忆体,即向量。在大型模型中,它通过计算来存储自然的向量,并通过向量来表示各个节点之间的关系。向量数据库并不是现在才出现的,它的优势在于处理非结构化的数据,因为我们知道结构化数据对机器来说更友好。非结构化数据是指文档、文字、声音、视频等无固定格式的数据。与之相对的是结构化数据,例如表格或数据库中的数据。在过去,我们能够录制和存储视频、音频等非结构化数据,但一直没有一种基于这些数据进行计算的方式。

为了解决这个问题,我们引入了向量数据。向量数据库将现实中的非结构化数据转化为向量形式,每个数据都成为一个向量。当进行计算时,将数据转化为向量的原因是它已经变成了数值,可以进行计算。可以计算两个向量之间的距离,这个距离在向量化过程中具有实际意义,它表示相似度。

例如,如果将两句话“今天天晴”和“今天天气很好”存储在向量数据库中,它们将成为两个不同的向量。但是,这两个向量之间的距离非常接近,通过使用向量引擎将它们向量化,可以得到非常接近的距离。这具有实际意义,可以对非结构化的数据进行大量计算。

大模型运行环境

大模型通常需要大量的计算资源来进行训练和推理。强大的硬件算力,如高性能的 CPU、GPU 或 TPU,可以提供更快速和高效的计算能力,加速大模型的运行。较低的算力可能会导致运行速度变慢或无法完成任务。

目前市场上提供的算力服务包括 Google Colab、Hugging Face 以及国内公有云等等,可为学习和开发提供长期算力支持。

业界中有很多大厂正在努力降低 AI 和大模型对算力的要求,有人表示这一趋势符合摩尔定律,将会迅速下降。同时,还有各种算法优化和并行处理的可能性。虽然这些可能超出了我们目前个人的能力范围,但我们可以关注未来的发展,说不定哪一天在笔记本上都能够运行。

大模型获取方式

获取想要的大模型非常简单。像 Hugging Face 提到的类似于 GitHub 的开源模型库,提供了大量的开源数据集和预训练的大模型。开发者可以直接在这些库中搜索并下载所需的大模型,然后在本地环境中进行使用和运行。

二、AI 应用架构

AI 应用的基本框架是用户输入在左边完成后,下方可以连接外部数据库和向量数据库。在中间是一个大模型,我们可以通过 API 的形式调用 AI 或者国内的文心一言等等来完成任务。另外,我们也可以选择自己部署一个开源的大模型,例如 ChatGPT 来进行基础的开发工作,这已经足够使用了。

模型层的代理层其实就是一个脚手架,通过代理机制利用大模型理解用户的需求,并将其切分为多个小任务,然后调用各种已知的工具来完成任务,当然这些工具需要事先告知给代理层。如何告诉工具需要做什么呢?一种常见的方式是通过查询和调用搜索引擎的 API。在这个 API 中,你只需要用自然语言写一段话,告诉它你想搜索人、事、物等方面的信息。当大模型在分解任务时,如果某个步骤需要查询某个人的信息,它会自主地调用这个工具。

注册过程实际上是将每个现有应用或外部系统的 API 进行简单的自然语言包装,以便在任何时候调用底层机制。它会观察结果,并根据满足要求与否来判断是否继续执行任务,直到任务完成。

整个机制还配合着向量数据库,该数据库专门为个人或特定场景提供服务。在企业场景中,大量的数据都是私有的,无论是结构化还是非结构化的,例如企业文档、规章制度、报告等都可以存储在向量数据库中。这样这个系统就能够成为企业私有的定制 AI 系统,用于回答内部问题。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/750514.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WordPress Dokan Pro插件 SQL注入漏洞复现(CVE-2024-3922)

0x01 产品简介 WordPress Dokan Pro插件是一款功能强大的多供应商电子商务市场解决方案,功能全面、易于使用的多供应商电子商务平台解决方案,适合各种规模的电商项目。允许管理员创建一个多卖家平台,卖家可以注册账户并在平台上创建自己的店铺,展示和销售自己的产品。提供…

python API自动化(基于Flask搭建MockServer)

接口Mock的理念与实战场景: 什么是Mock: 在接口中,"mock"通常是指创建一个模拟对象来代替实际的依赖项,以便进行单元测试。当一个类或方法依赖于其他类或组件时,为了测试这个类或方法的功能,我们可以使用模拟对象来替代…

k-NN 剪辑近邻法

本篇文章是博主在人工智能等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在AI学习笔记&#…

【分享】30秒在线自助制作电子证件照

近期由于自己需要制作电子证件照,所以在网上找在线制作电子证件照的网站,找了很多网站都是收费的,也下载了很多app制作,都是要收费的。最后,所以索性自己开发一个网站制作电子证件照。这里分享给需要的朋友。&#xff…

Jenkins教程-9-发送企业微信测试报告通知

上一小节我们学习了Jenkins上下游关联自动化测试任务的构建的方法,本小节我们讲解一下发送企业微信测试报告通知的方法。 1、自动化用例执行完后,使用pytest_terminal_summary钩子函数收集测试结果,存入本地status.txt文件中,供J…

点云可视化 .ply文件 | 方案汇总

前言 本文分析可视化点云.ply文件的几种方法,包括MeshLab软件、在线可视化点云.ply文件、通过PyntCloud库编程实现。 PLY是一种用于存储三维数据的文件格式,常用于点云数据和多边形网格。 被广泛应用于计算机图形学、3D扫描和3D打印等领域。PLY文件可…

React的Props、生命周期

Props 的只读性 “Props” 是 React 中用于传递数据给组件的一种机制,通常作为组件的参数进行传递。在 React 中,props 是只读的,意味着一旦将数据传递给组件的 props,组件就不能直接修改这些 props 的值。所以组件无论是使用函数…

【GD32】08 - IIC(以SHT20为例)

GD32中的IIC 今天来了解一下GD32中的硬件IIC,其实我个人是觉得软件IIC比较方便的,不过之前文章里用的都是软件IIC,今天就算是走出自己的舒适圈,我们来了解了解GD32中的硬件IIC。 我这里用的型号是GD32F407,不同型号的…

ComfyUI中运行Stable Audio Open,实现背景音乐、音效自由

🧨背景 stability在一个月之前默默的发布了Stable Audio Open 1.0的音频音效生成模型,不过好像影响力一般,也没有太多文章分享测试,而今天看comfyui作者的一篇介绍文档,他已经让comfyui默认支持了这个模型。 原开源地…

Linux 基于sqlite3数据库的学生管理系统

一、数据库 sqlite官网:www.sqlite.org 1.1 数据库的安装 离线安装: sudo dpkg -i sqlite3_3.22.0-1ubuntu0.4_amd64.deb //数据库软件 sudo dpkg -i libsqlite3-dev_3.22.0-1ubuntu0.4_amd64.deb //数据库的库函数 在线安装: sudo apt-get …

【Linux】Linux下使用套接字进行网络编程

🔥博客主页: 我要成为C领域大神🎥系列专栏:【C核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 用于网络应用开…

知识图谱——Neo4j数据库实战

数据与代码链接见文末 1.Neo4j数据库安装 JDK 安装:https://www.oracle.com/java/technologies/javase-downloads.html Neo4j 安装:https://neo4j.com/download-center/ 配置好 JDK 和 Neo4j 的环境变量

嵌入式Linux系统编程 — 4.1 字符串输入输出

目录 1 字符串输出 1.1 字符串输出函数简介 1.2 示例程序 2 字符串输入 2.1 字符串输入简介 2.2 示例程序 程序运行时,需打印信息至标准输出 stdout 设备 或标准错误 stderr设备(譬如屏幕),如调试信息、报错信息、中间产生的…

数据库课程知识点总结

数据库概述 数据库基本特点:数据结构化,数据独立性,数据冗余小,易扩充,统一管理和控制,永久存储,有组织,可共享 三级模式 模式:一个数据库只有一个模式,是对…

将idea项目代码部署到Linux系统中

目录 1. 将idea与虚拟机建立连接 2. 设置上传到虚拟机的目录 3.上传项目代码 1. 将idea与虚拟机建立连接 打开idea要上传的项目,找到Tools -> Development -> Configuration 设置一个连接的名称,我这里设置为centos 将Type设置为SFTP,点击SSH configuration 开始配…

数据库物理结构设计-定义数据库模式结构(概念模式、用户外模式、内模式)、定义数据库、物理结构设计策略

一、引言 如何基于具体的DBMS产品,为数据库逻辑结构设计的结果,即关系数据库模式,制定适合应用要求的物理结构 1、在设计数据库物理结构前,数据库设计人员首先 要充分了解所用的DBMS产品的功能、性能和特点,包括提供…

抖音集成:通过MessageBox引领数字化营销新潮流

抖音集成:通过MessageBox引领数字化营销新潮流 在数字化营销的大潮中,企业需要不断探索新的方式来优化其营销策略,以抓住更多的市场机会。抖音作为一款全球知名的短视频社交平台,凭借其庞大的用户群体和高度互动的特性&#xff0…

亿发进销存管理系统+:多终端无缝协同,实现经营销售场景全覆盖

亿发软件凭借产品、市场、业务的深入理解,在进销存基础上进行了延伸,推出多终端、一体化的“进销存管理系统”多元产品矩阵。对企业经营中进货、出货、销售、付款等进行全程跟踪管理。有效辅助企业解决业务管理、销售管理、库存管理、财务管理等一系列问…

【论文阅读】-- TSR-TVD:时变数据分析和可视化的时间超分辨率

TSR-TVD: Temporal Super-Resolution for Time-Varying Data Analysis and Visualization 摘要1 引言2 相关工作3 我们的循环生成方法3.1 损失函数3.2 网络架构 4 结果与讨论4.1 数据集和网络训练4.2 结果4.3 讨论 5 结论和未来工作致谢参考文献附录1 训练算法及优化2 网络分析…

02.Ambari自定义服务开发-metainfo.xml介绍

文章目录 metainfo.xml 介绍配置说明Hbase metainfo.xml配置说明配置参数详细介绍配置文件样例DORIS metainfo.xml 介绍 ​ 在Ambari自定义开发中,metainfo.xml 配置文件起着至关重要的作用。它用于定义服务的元数据信息,包括服务的版本、组件、执行脚本…