机器看世界

 博主简介

博主是一名大二学生,主攻人工智能研究。感谢让我们在CSDN相遇,博主致力于在这里分享关于人工智能,c++,Python,爬虫等方面知识的分享。 如果有需要的小伙伴可以关注博主,博主会继续更新的,如果有错误之处,大家可以指正。

专栏简介:   本专栏主要研究计算机视觉,涉及算法,案例实践,网络模型等知识。包括一些常用的数据处理算法,也会介绍很多的Python第三方库。如果需要,点击这里  订阅专栏 。

给大家分享一个我很喜欢的一句话:“每天多努力一点,不为别的,只为日后,能够多一些选择,选择舒心的日子,选择自己喜欢的人!”


目录

计算机眼里的图像

计算机视觉的起源

马尔计算视觉

主动和目的视觉

多视几何和分层三维重建

基于学习的视觉

计算及视觉的难点

专栏研究方向

传统图像处理之OpenCV的妙用

OpenCV安装

OpenCV模块

OpenCV的基本操作

OpenCV数据存取

 OpenCV图像缩放

 OpenCV图像裁剪

 OpenCV图像旋转

从摄像头读取

矩阵操作


计算机眼里的图像

图像一直以直观著称,一张图像包含的信息很多,所谓一图胜千言,对于人类来说,理解图像很方便,几乎是一眼就能理解图像表达的意思,科学研究表明这是因为人的大脑有一套注意力集中机制,对于图像中的海量信息,人脑能快速地找到其中最重要的信息。但是,计算机该如何去理解?这就涉及到了计算机视觉的知识,本专栏就是来描述计算机视觉。

计算机视觉的起源

1982年《视觉》(Marr,1982)一书的问世,标志着计算机视觉这门学科的诞生。此后,计算机视觉经历了四个阶段,第一个阶段,马尔计算视觉;第二个阶段,主动和目的视觉;第三阶段,多视几何和分层三维重建;第四个阶段,基于学习的视觉。四个阶段算然是依次进行的,但不能说哪一个好,哪一个不好,只是后者比前者更加顺应当时的时代。

马尔计算视觉

马尔计算视觉的主要思想是大脑可以快速完成三维重建,马尔认为,三维重建是可以完全靠计算来实现。他认为图象是物理实体在视网膜上的投影,所以理解了物理信息,就可以理解图像信息。简而言之,其计算机视觉计算理论就是要“挖掘物体的物理属性来完成对应的视觉问题”。其意义完在于,如果简单地从数学角度出发,很多图像具有歧义性。

主动和目的视觉

马尔视觉的泛化性不够理性,很难在工业界实现,可以想象,由计算机对任何物体做三维重建是多么困难。美国的R.Bajcsy教授,提出了主动视觉的概念,主要思想视觉要有目的性,例如在一张百人合影里面,人能轻松地找到自己的位置,或者自己好友的位置,而对其他人“视而不见”。三维重建并非视觉的目的,找到想看到的图像才是根本目的。

多视几何和分层三维重建

随着主动视觉昙花一现,多视几何走向繁荣,多视几何的代表性人物有法国的O.Faugeras、美国的R.Hartely和英国的A.Zisserman等。多视几何的目的是增加三维重建算法的效率和精度,使其能真正落地。三维重建就是从图像中选取合适的图像集,然后对拍摄位置信息进行标定并重建出场景的三维结构。

基于学习的视觉

基于学习的视觉是本书的主要内容,以机器学习为主要手段,包括流形学习和深度学习两大流派。

流形学习时域2000年,但是在后面的研究中发现,多数情况下流形学习的结果还不如传统的降维方法,如主成分分析和线性判别分析等。

深度学习虽然是近几年才火起来的,但是其效果非常好,并且模型层出不穷。深度学习更像是实践科学,和前几个阶段不同,并非有很完善的理论支持。往往在不停的尝试中,模型得到改善。在静态物体识别中,卷积神经网络已经超过人类的准确度。

计算及视觉的难点

计算机视觉的难点有两点:三维重建和鲁棒性。

三维重建之所以对人类来说非常简单,主要是因为人本身就生活在三维世界中,而计算机却是一个二维“生物”。就像我们去构建四维世界的东西,就会觉得非常困难,根本无从下手。对于计算机来说,完成三维世界的图像构建,对于他来说,无疑是降维打击。所以这才需要人类的帮助,让计算机能够识别图像。

鲁棒性的问题简单地说就是先验知识和注意机制问题。对于人来说,即使只是轮廓,或者很模糊的照片,也能大致猜测出图片的内容。但是计算机就不行,他对图像的识别都有很严格的限制,改变颜色,形状。模糊程度等,都会让计算机识别精度下降。这就是鲁棒性问题。

专栏研究方向

在介绍这篇专栏前,我先解释一下,博主之前一直在更新人工智能算法专栏,由于人工智能算法涉及到的面很广,知识面太过复杂,其中,就包含了深度学习,所以,博主打算出一期计算机视觉的专栏,先介绍一下,这样学习人工智能算法会简单很多。博主更新完计算机视觉专栏后,会继续更新人工智能算法。在这里给大家说一声抱歉!

计算机视觉主要研究方向有图像识别,目标检测,图像分割,目标跟踪等。

图像识别,也叫图像分类,可以分为i物种级分类,子类分类和实例级分类,主要模型有VGG,GoogleNet,RestNet等,常用的数据库有Minist手写数字,carfil10,cifar100,ImageNet等。

目标检测,拥有识别物体类别,还需要框出物体位置信息,例如智能相机,还能标注出人脸的位置。传统的,我们可以用OpenCV来解决这类问题,但是召回率低。常用的模型有Fast R-CNN,YOLO和SSD等。

图像分割,计算机视觉中最高层次的理解范畴。目标就是把图像分割成具有相似特性的若干个区域,并使他们对因物体的不同部分或不同的物体。常用的模型是全卷积神经网络。

目标跟踪也可以看成连续的目标检测,目的就是在视频中对物体进行连续跟踪。目标跟踪常用在监控系统中。跟踪算法可以被分为生成式和判别式两大类别。深度学习主要用在判别模式上,著名的模型有SO-DLT和FCNT等。不同于目标检测、物体识别等领域深度学习一家独大的形式,深度学习在目标跟踪方向还未能达成垄断地位,其主要难点在于数据缺失和物体快速移动。

提到深度学习相关的计算机视觉,不得不提到最近流行的风格迁移,以及GAN生成式对抗网络。例如现在使用的ZAO就是运用了此技术。

传统图像处理之OpenCV的妙用

OpenCV(Open Source Computer Vision Library)顾名思义就是开源的计算机视觉库,采用C,C++编写,也提供了Python和Matlab等语言的接口,并且在各大操作平台均可使用。OPenCV不只是一个简单的提供了计算机视觉常用的操作,更对其中关键算法进行了优化和提速,从而可以进行多线程处理。

OpenCV安装

pip install opencv-python

如果下载速度太慢,可以考虑使用镜像:

pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

OpenCV模块

CUDA-accelerated Computer Vision:CUDA加速模块。

Core functionality:和兴功能模块,包含各种c++操作,接口,矩阵运算。

Image Processing:图像处理模块,包含图像处理四大任务。

Image file reading and writing:图像读取和保存模块。

Video I/O:视频读取和保存模块。

Video Analysis:视频分析模块。

Camera Calibration and 3D Reconstruction:相机校准和3D重建模块。

2D Features Framework:2D功能框架模块。

Objecneural Dection: 目标检测模块。

Deep  Network module:深度学习模块

Machine Learning:机器学习模块。

Clustering and Search in Multi-Dimensional Spaces::多维空间模块。

Computational Photography:计算摄影模块。

Images stitching:图像拼接模块。

G-API framework:图论框架模块。

ArUco Marker Detection:ArUco表i==标记检测模块。

Improved Background-Foreground Segmentation Methods:背景,前景分割模块。

Biologically inspired vision models and derivated tools:基于生物的视觉模型和工具模块。

Custom Calibration Pattern for 3D reconstruction:传统模式三维重建模块。

OpenCV的基本操作

OpenCV数据存取

opencv支持各种类型与格式的图像数据,读取方式非常简单,使用imread函数即可,该函数有两个参数,第一个参数path指图片路径,第二个参数flag表示读取方式,默认值为从v.IMREAD_COLOR,默认读取彩色图片,可选值为cv2.IMREAD_GRAYSCALE和cv2.IMREAD_UNCHANGED默认颜色空间是BGR而非常用的FGB。

import cv2
img=cv2.imread('F:\Image\\test1.jpg',cv2.IMREAD_COLOR)
cv2.imshow('图片名字',img)
cv2.waitKey(0)
#保存图片
cv2.imwrite('图片文件.png',img) #第一个参数是保存图片文件的名字,第二个是后缀

 

 OpenCV图像缩放

当数据集的图像大小不一样时,我们就需要用到图像缩放,使所有的图片大小保持一致,函数时cv2.resize(),第一个参数是目标图像,第二个参数是缩减比例。


import cv2
import numpy as np
#读取图片
img=cv2.imread('F:\Image\\test2.jpg',cv2.IMREAD_COLOR)
cv2.imshow('原有的图片',img)
#进行缩放
img=cv2.resize(img,(1000,1000))  #比例放缩1000:1000
#显示图片
cv2.imshow('图片缩放',img)
cv2.waitKey(0)

 OpenCV图像裁剪

普通图像的裁剪非常简单,由于读取的图像存储方式时矩阵,所以我们只需取矩阵的一部分就完成了裁剪。


import numpy as np
import cv2
img=cv2.imread('F:\Image\\test3.jpg',cv2.IMREAD_COLOR)
cv2.imshow('裁剪前',img)
patch=img[0:50,0:50]
#取左上角50x50小块
cv2.imshow('裁剪过后的图片',patch)
cv2.waitKey(0)

 当然,虽然我们不知道图片的大小,所以裁剪的时候很麻烦,这时我们就可以随机裁剪,l利用random模块:


import numpy as np
import cv2
import random
img=cv2.imread('F:\Image\\test3.jpg',cv2.IMREAD_COLOR)
#得到图像形状
w,h,d=img.shape
cv2.imshow('裁剪前',img)
x=random.randint(0,w)
y=random.randint(0,h)
patch=img[x:w,y:h]
#取左上角50x50小块
cv2.imshow('裁剪过后的图片',patch)
cv2.waitKey(0)

 OpenCV图像旋转

图像旋转也是重要的操作,当图像的方向为非水平方向时,就需要通过旋转成水平方向。

在OpenCV中,图像旋转有两种实现方式:

第一种主要通过仿射变换,所用函数为cv2.warpAffine(),此函数有三个参数:分别为需要旋转的图像,仿射变换矩阵,以及输出图像的大小。

仿射变换,也称仿射映射,是指一个向量空间通过一次线性变换后,变为另一个空间。可以用如下公式表示:

y=Ax+b

其中矩阵A表示旋转与缩放,向量b表示平移。

A=\begin{pmatrix} 1 &0 \\ 0& 1 \end{pmatrix} b=\begin{pmatrix} x\\ y \end{pmatrix}

(1)旋转变换,顺时针旋转\Theta

\begin{pmatrix} cos(\Theta ) &-sin(\Theta ) &0 \\ sin(\Theta ) & cos(\Theta ) & 0 \end{pmatrix}

(2)缩放变换,水平方向为a倍,竖直方向变为b倍。

\begin{pmatrix} 1 &0 &0 \\ 0&-1 &0 \end{pmatrix}

 代码展示:


import numpy as np
import cv2
img=cv2.imread('F:\Image\\test4.jpg',cv2.IMREAD_COLOR)
w,h,d=img.shape
#放射变换矩阵
M=np.array([[0,0.5,-10],[0.5,0,0]])
#旋转图片
img1=cv2.warpAffine(img,M,(w,h))
#显示图片
cv2.imshow('图片旋转',img)
cv2.waitKey(0)

第二种使用OpenCV内置函数,所用的函数为cv2.getRotationMatrix2D(),此函数共三个参数,分别为图片旋转中心,逆时针旋转角度,以及缩放的倍数。和裁剪一样,这里也可以使用random()实现随机选择和平移功能。


import numpy as np
import cv2
img=cv2.imread('F:\Image\\test4.jpg',cv2.IMREAD_COLOR)
img1=cv2.getRotationMatrix2D((1,1),90,1)
cv2.imshow('图片旋转',img1)
cv2.waitKey(0)

从摄像头读取

OpenCV不仅能对图像进行处理,还能对视频进行处理,我们也可以直接调用摄像头进行计算机获取视频。函数是cv2.VideoCapture()函数,此函数只有一个参数,0为计算机摄像头,1为其他来源。


import cv2
import numpy as np
capture=cv2.VideoCapture(0)
while(True):
    #读取一帧
    ret,frame=capture.read()
    #显示一帧
cv2.imshow('capture',frame)
#关闭摄像头
capture.release()

 读取视频后,可以用cv2.VideoWriter()函数创建视频保存器即可。和读取的时候一样,也需要一帧一帧的保存,使用从cv2.putText()函数,可选参数为帧名称,帧标题,标题位于左上角坐标,字体,字体大小,颜色,字体粗细。


#从摄像头读取并保存录像
import cv2
import numpy as np
#创建摄像头
capture=cv2.VideoCapture(0)
#帧率
fps=60
#保存格式(mp4)
fourcc=cv2.VideoWriter_fourcc(*'mp4v')
#创建保存器
vout=cv2.VideoWriter()
vout.open('F:\Image\\temp.mp4',fourcc,fps,(1280,720),True)
#读取一帧并保存
for i in range(100):
    _,frame=capture.read()
    cv2.putText(frame,str(i),(10,20),cv2.FONT_HERSHEY_PLAIN,1,(0,255,0),1,cv2.LINE_AA)
    vout.write(frame)
#释放资源
vout.release()
capture.release()

这样,就可以实现对摄像头的调用。你就可以知道谁打开了你的电脑。

矩阵操作

add 矩阵加法,A+B的更高级形式,支持mask
scaleAdd 矩阵加法,一个带有缩放因子dst(I) = scale * src1(I) + src2(I)
addWeighted 矩阵加法,两个带有缩放因子dst(I) = saturate(src1(I) * alpha + src2(I) * beta + gamma)
subtract 矩阵减法,A-B的更高级形式,支持mask
multiply 矩阵逐元素乘法,同Mat::mul()函数,与A*B区别,支持mask
gemm 一个广义的矩阵乘法操作
divide 矩阵逐元素除法,与A/B区别,支持mask
abs 对每个元素求绝对值
absdiff 两个矩阵的差的绝对值
exp 求每个矩阵元素 src(I) 的自然数 e 的 src(I) 次幂 dst[I] = esrc(I)
pow 求每个矩阵元素 src(I) 的 p 次幂 dst[I] = src(I)p
log 求每个矩阵元素的自然数底 dst[I] = log|src(I)| (if src != 0)
sqrt 求每个矩阵元素的平方根
min, max 求每个元素的最小值或最大值返回这个矩阵 dst(I) = min(src1(I), src2(I)), max同
minMaxLoc 定位矩阵中最小值、最大值的位置
compare 返回逐个元素比较结果的矩阵
bitwise_and, bitwise_not, bitwise_or, bitwise_xor 每个元素进行位运算,分别是和、非、或、异或
cvarrToMat 旧版数据CvMat,IplImage,CvMatND转换到新版数据Mat
extractImageCOI 从旧版数据中提取指定的通道矩阵给新版数据Mat
randu 以Uniform分布产生随机数填充矩阵,同 RNG::fill(mat, RNG::UNIFORM)
randn 以Normal分布产生随机数填充矩阵,同 RNG::fill(mat, RNG::NORMAL)
randShuffle 随机打乱一个一维向量的元素顺序
theRNG() 返回一个默认构造的RNG类的对象 theRNG()::fill(…)
reduce 矩阵缩成向量
repeat 矩阵拷贝的时候指定按x/y方向重复
split 多通道矩阵分解成多个单通道矩阵
merge 多个单通道矩阵合成一个多通道矩阵
mixChannels 矩阵间通道拷贝,如Rgba[]到Rgb[]和Alpha[]
sort, sortIdx 为矩阵的每行或每列元素排序
setIdentity 设置单元矩阵
completeSymm 矩阵上下三角拷贝
inRange 检查元素的取值范围是否在另两个矩阵的元素取值之间,返回验证矩阵
checkRange 检查矩阵的每个元素的取值是否在最小值与最大值之间,返回验证结果bool
sum 求矩阵的元素和
mean 求均值
meanStdDev 均值和标准差
countNonZero 统计非零值个数
cartToPolar, polarToCart 笛卡尔坐标与极坐标之间的转换
flip 矩阵翻转
transpose 矩阵转置,比较 Mat::t() AT
trace 矩阵的迹
determinant 行列式 |A|, det(A)
eigen 矩阵的特征值和特征向量
invert 矩阵的逆或者伪逆,比较 Mat::inv()
magnitude 向量长度计算 dst(I) = sqrt(x(I)2 + y(I)2)
Mahalanobis Mahalanobis距离计算
phase 相位计算,即两个向量之间的夹角
norm 求范数,1-范数、2-范数、无穷范数
normalize 标准化
mulTransposed 矩阵和它自己的转置相乘 AT * A, dst = scale(src - delta)T(src - delta)
convertScaleAbs 先缩放元素再取绝对值,最后转换格式为8bit型
calcCovarMatrix 计算协方差阵
solve 求解1个或多个线性系统或者求解最小平方问题(least-squares problem)
solveCubic 求解三次方程的根
solvePoly 求解多项式的实根和重根
dct, idct 正、逆离散余弦变换,idct同dct(src, dst, flags | DCT_INVERSE)
dft, idft 正、逆离散傅立叶变换, idft同dft(src, dst, flags | DTF_INVERSE)
LUT 查表变换
getOptimalDFTSize 返回一个优化过的DFT大小
mulSpecturms 两个傅立叶频谱间逐元素的乘法
 

好了,本节的内容就到此结束了,简单的解释了一下opencv,后续内容会继续更新的,关注博主,持续更新不迷路。拜了个拜。 

点赞加关注不迷路

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/750.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

开源超级终端工具——WindTerm

1、下载和安装(我的是win10,其他版本各位自选) Releases kingToolbox/WindTerm GitHub 安装的话,相信大家不用我赘述了。 初始界面是这样的: 2、WindTerm使用 2.1 本地会话(最下面那个框,发…

自动化测试实战篇(10),找不到合适接口测试怎么办?Postman中mock模拟接口帮你解决烦恼

一般想学习接口测试,找不到相应的接口进行测试也是比较麻烦的一件事情,尤其是找一些能够正常显示想要的相应的数据的接口更是相对来讲比较复杂,那么有没有简单点造接口数据的方式呢? 像是mock框架,以它为基础的apifox…

23.3.14打卡 2022年江西省大学生程序设计竞赛(正式赛)ABL

就写了签到, 其他题没写, 这场好像3题就银了 纪念一下3.14原粥率日 比赛链接:https://ac.nowcoder.com/acm/contest/43898 A题 Special Adjustment Method 题意 给出非负整数x, y, z 你可以让其中两个数字-1, 另外一个2, 使得x2y2z2x^2y^{2}z^{2}x2y2z2最大 题解 这题很容…

站上风口,文心一言任重道远

目录正式发布时机选择逻辑推理AI绘画用户选择总结自从OpenAI公司的chatGPT发布以来,吸引了全球目光,同时也引起了我们的羡慕,希望有国产的聊天机器人,盼星星盼月亮,终于等来了百度文心一言的发布。 正式发布 3月16日…

安全SaaS,在中国TO B中艰难成长

无论是一体化、还是以业务为中心专攻政企或金融客户,还是针对中小微企业市场推出免费产品,都可能成为未来安全SaaS规模化的发展路径。 作者|斗斗 编辑|皮爷 出品|产业家 5G、物联网、AI、云计算等技术的应用,让生产、服务过程加速数字化、…

Unity PS4/PS5开发环境搭建

首先,主机游戏PlayStation/Nintendo Switch都是比较闭塞的,开发者账号是必须的。 开发环境有两个部分,一是SDK Kit(各种开发调试环境),二是Unity的支持库(安装后才能在Unity中切换到PS平台); 需…

软件开发的权限系统功能模块设计,分享主流的九种常见权限模型

软件系统的权限控制几乎是非常常见且必备的,这篇文章整理下常见的九种模型,几乎基本够你用了,主流的权限模型主要有以下9种: 1、ACL模型 访问控制列表 2、DAC模型 自主访问控制 3、MAC模型 强制访问控制 4、ABAC模型 基于属性的访…

【数据结构】带头双向循环链表的实现

🌇个人主页:平凡的小苏 📚学习格言:别人可以拷贝我的模式,但不能拷贝我不断往前的激情 🛸C语言专栏:https://blog.csdn.net/vhhhbb/category_12174730.html 🚀数据结构专栏&#xff…

【JavaEE】前后端分离实现博客系统(后端实现)

写在前面 Hello,在上一篇中,我们已经实现了对于博客系统的页面构建任务。本次主要解决的问题就是针对这四个界面,实现后端的 servlet 程序,规范前后端交互的接口,编写客户端和服务端代码,处理请求并反馈。博…

响应式编程详解,带你熟悉Reactor响应式编程

文章目录一、什么是响应式编程1、Java的流和响应式流2、Java中响应式的使用3、Reactor中响应式流的基本接口4、Reactor中响应式接口的基本使用二、初始Reactor1、Flux和Mono的基本介绍2、引入Reactor依赖3、响应式类型的创建4、响应式类型的组合(1)使用m…

【C语言蓝桥杯每日一题】——数字三角形

【C语言蓝桥杯每日一题】—— 数字三角形😎前言🙌数字三角形🙌总结撒花💞😎博客昵称:博客小梦 😊最喜欢的座右铭:全神贯注的上吧!!! &#x1f60a…

QEMU启动ARM32 Linux内核

目录前言前置知识ARM Versatile Express开发板简介ARM处理器家族简介安装qemu-system-arm安装交叉编译工具交叉编译ARM32 Linux内核交叉编译ARM32 Busybox使用busybox制作initramfs使用QEMU启动ARM32 Linux内核模拟vexpress-a9开发板模拟vexpress-a15开发板参考前言 本文介绍采…

编译原理

文章目录绪论第1章 绪论1.什么是编译2.编译系统的结构3.词法分析第2章 语言及其文法字母表 ∑\sum∑概念终结符非终结符产生式文法Chomsky文法分类体系0型文法 (Type-0 Grammar)1型文法(Type-1 Grammar)2型文法(Type-2…

JAVA开发与JAVA(一文学会使用ElasticSearch)

在web网站的架设中特别是数据量大的网站或者APP小程序需要搜索或者全文检索的场景,几乎都需要借助ElasticSearch来作为全文检索引擎,以提高网站的搜索效率和性能。 这一节,我们通过一篇文章介绍,使大家通过一文就学会使用Elastic…

python 函数:定义、调用、参数、返回值、嵌套、变量的作用域(局部变量、全局变量)、global、匿名函数lambda

函数可以将我们的程序分解成最小的模块,避免重复使用。函数内部的代码,只有被调用的时候才会执行。 函数的定义(def就是define): 格式:def 函数名(): 函数封装的代码 函数的调用: 格式&…

大学生考研的意义?

当我拿起笔头,准备写这个话题时,心里是非常难受的,因为看到太多的学生在最好的年华,在自由的大学本应该开拓知识,提升认知,动手实践,不断尝试和试错,不断历练自己跳出学生思维圈&…

15000 字的 SQL 语句大全 第一部分

一、基础 1、说明:创建数据库CREATE DATABASE database-name 2、说明:删除数据库drop database dbname 3、说明:备份sql server--- 创建 备份数据的 device USE master EXEC sp_addumpdevice disk, testBack, c:\mssql7backup\MyNwind_1.dat …

数据结构--二叉树

目录1.树概念及结构1.1数的概念1.2数的表示2.二叉树概念及结构2.1二叉树的概念2.2数据结构中的二叉树2.3特殊的二叉树2.4二叉树的存储结构2.4.1顺序存储2.4.2链式存储2.5二叉树的性质3.堆的概念及结构3.1堆的实现3.1.1堆的创建3.1.2堆的插入3.1.3堆顶的删除3.1.4堆的代码实现3.…

蓝桥杯刷题冲刺 | 倒计时26天

作者:指针不指南吗 专栏:蓝桥杯倒计时冲刺 🐾马上就要蓝桥杯了,最后的这几天尤为重要,不可懈怠哦🐾 文章目录1.路径2.特别数的和3.MP3储存4.求和1.路径 题目 链接: 路径 - 蓝桥云课 (lanqiao.cn…

算法学习之二分查找

🎃个人主页🎃:勇敢的小牛儿 🧨推荐专栏🧨:C语言知识点 ✨座右铭✨:敢于尝试才有机会 ⚠️今日鸡汤⚠️:Is the true wisdom fortitude ambition. -- Napoleon 真正的才智是刚毅的志向…