今天不看明天付费------中国AGI(人工智能)的发展趋势

请添加图片描述

请添加图片描述

深入解析了中国AGI(人工智能)的发展趋势,并清晰地展示了其市场分层结构。

**
从下至上,AGI市场被划分为四个主要层级:基础设施层、模型层、中间层和应用层。

基础设施层作为最底层,为AGI的发展提供了坚实的基石。它涵盖了算力、数据等核心资源,确保模型训练和推理的高效进行。在这一层级,中国电信、中国移动、中国联通、华为、浪潮等厂商发挥着关键作用。

模型层位于中间,是AGI技术的核心所在。它专注于语言及多模态大模型的开发,这些模型的能力直接影响AGI在应用层和业务层的表现。百度、阿里巴巴、科大讯飞、腾讯、智谱AI、百川智能、零一万物等厂商在这一领域具有显著优势。

中间层则连接了应用层和模型层,提供了AGI实际应用所需的核心功能和服务。这一层级涵盖了应用程序、插件、硬件等,旨在为用户提供特定服务和解决具体业务问题。出门问问、商汤科技、美图、钉钉、WPS等厂商在这一层级中扮演着重要角色。

应用层作为最上层,是用户直接使用AGI技术的界面。它涵盖了Fine-tune、Prompt、RAG、Agent Framework等技术,为用户提供丰富的服务和应用。阿里巴巴、腾讯、网易、京东、字节跳动、OpenAI等厂商在这一层级中展现了强大的实力。

通过这种分层结构,我们可以清晰地看到AGI技术的发展路径和市场布局。从基础设施到应用层,每一层级都承载着不同的功能和角色,共同推动着AGI技术的不断进步和广泛应用。
请添加图片描述
**

云原生数据计算系统”的架构及其技术突破。

**
该系统以云原生技术为核心,构建了一个从数据收集、处理、存储到应用服务的完整数据流。

  • 系统采用了云原生基础设施作为底座,包括云原生存储、网络等关键组件,为数据处理提供了高效、可靠的基础。
  • 在数据计算层,系统集成了多种数据计算框架,如Spark、Flink、Hadoop等,以满足不同场景下的数据处理需求。同时,系统还引入了首创的云原生eMPP架构,这是中国唯一自研的Table Format技术,极大地提高了数据处理效率和灵活性。
  • 数据存储层采用了云原生存储架构,实现了元数据、数据和计算的完全分离。这种设计确保了数据的安全性,数据一旦入库便永不出户,同时实现了数据可用不可见,算力不随数据迁移,从而大大提高了系统的稳定性和可靠性。
  • 数据服务层,系统提供了数据湖、数据仓库、数据集市等多种服务,支持数据的共享和访问,促进了不同用户或应用程序之间的协作。此外,系统还采用了全链路加密技术,确保数据从源头到使用的全过程中都得到保护。
  • 数据智能层,系统利用人工智能技术和算法,从海量数据中提取有价值的信息和洞察,为决策提供有力支持。同时,系统还引入了Data Sharing技术,支持数据要素在多方之间安全流转和共享,进一步推动了数据的价值最大化。
  • 应用层,系统提供了丰富的数据应用和数据工具,帮助用户更好地利用数据资源,实现业务目标。
    这个云原生数据计算系统通过集成多种先进技术和服务,构建了一个高效、可靠、安全的数据处理平台,为企业的数字化转型提供了有力支持。请添加图片描述

PieDataCS数据底座如何为AI大模型提供全面赋能。

  • PieDataCS在推理阶段实施细粒度的权限控制,确保私域隐私数据的安全,防止数据泄露。其次,该系统支持结构化与非结构化数据的Embedding,通过先进的数据共享技术,实现数据的直观共享,促进数据流通。
  • 在数据准备方面,PieDataCS能够处理实时的业务数据,通过数据清洗、分类和去重等步骤,构建高质量的行业数据集,为AI大模型提供精准的数据支持。此外,该系统还致力于提升AI大模型的准确度,通过优化算法和模型结构,突破预训练带来的知识时间限制,避免模型因数据变化或更新而产生的不一致问题,从而增强用户信任度。
  • PieDataCS为AI大模型提供了RAG框架,使大模型具备记忆功能,减少重复的推理过程,显著提高响应速度和性能。这一创新技术使得行业大模型在处理复杂任务时更加高效和准确。

PieDataCS数据底座通过其强大的数据安全、数据共享、数据准备、提升准确度和推理加速等功能,为AI大模型提供了全方位的赋能,推动了行业大模型的发展和应用。请添加图片描述
云原生数据计算系统的架构,特别是虚拟数仓引擎的设计。该系统集成了多个关键组件,旨在提供高性能、高可用性和灵活扩展性的数据处理能力。

  • 元数据服务是系统的核心,它负责管控服务,包括安全管理、租户管理、用户管理、权限管理和审计服务等,确保数据的安全性和合规性。同时,元数据服务还提供元数据访问、审计和同步等功能,为整个系统提供统一的元数据视图。
  • 计算节点是数据处理的核心部分,包括存储引擎和执行引擎。存储引擎负责数据的查询、解析、计算和分布式汇总等功能,确保数据的高效处理。执行引擎则负责SQL解析、查询优化和执行计划生成,优化数据处理流程,提高执行效率。
  • 数据存储方面,系统采用了多种存储方案,包括MySQL用于元数据存储,HDFS分布式文件系统用于计算数据存储,以及Redis用于缓存数据存储。这些存储方案的选择旨在提供高效、可靠和可扩展的数据存储能力。
  • 系统还提供了可视化查询功能,通过图形界面、自定义动态仪表板和实时仪表板等方式,为用户提供直观、便捷的数据查询和分析体验。
  • 在技术栈方面,系统采用了Kubernetes进行容器编排和管理,OpenStack作为PaaS平台的基础,以及LuoShan等基础平台技术。这些技术栈的选择旨在提供稳定、可靠和高效的基础设施支持。
  • 系统还具备多种特性,如分布式事务管理、多租户隔离、自定义函数(UDF)支持和计算存储分离等。这些特性使得系统能够支持复杂的数据处理场景,提供灵活、可扩展的解决方案。
  • 总的来说,这个云原生数据计算系统架构图展示了一个全面、高效和灵活的数据处理平台,能够支持各种复杂的数据处理需求,为企业提供强大的数据支持能力。请添加图片描述

AIGC全生命周期管理的架构

**其核心在于PieCloudML引擎的设计。**整个架构通过集成多种工具和框架,如Jupyter、PyTorch、Kubernetes和Pandas等,形成了一个完整的数据科学和机器学习生命周期管理系统。

架构中包含了多个关键组件,如客户端管理器用于处理客户端请求,文件服务器用于存储和处理文件,Spark集群用于数据处理和分析,以及Kubernetes集群用于容器编排和管理。此外,模型服务器则负责机器学习模型的部署和管理。

  • 在开发平台方面,Jupyter提供了创建和共享笔记本的便利,PyTorch则支持深度学习模型的开发,Pandas则用于数据处理和分析。同时,架构还集成了多种机器学习框架,如TensorFlow、PyTorch、Keras和Scikit-learn,以满足不同机器学习任务的需求。
  • 数据访问接口方面,架构支持Spark Common Connectors、JDBC/ODBC等标准SQL驱动,以及Posix/53 API等接口,确保数据能够高效、安全地在各个模块间流动。
  • 此外,架构还结合了LLM(大语言模型)技术,支持模型预测和部署,进一步提升了系统的智能化水平。同时,提供了JupyterLab、PyCharm、VSCode等开发工具,以及Git和Docker等版本控制和容器化工具,方便用户进行开发和部署。
  • 在集群管理方面,Kubernetes和Spark分别负责集群管理和大数据处理,确保系统的高效运行和扩展性。数据存储方面,HDFS和Kafka分别用于大规模数据存储和实时数据流处理,满足不同的数据存储需求。

这个AIGC全生命周期管理架构通过集成多种工具和框架,形成了一个高效、可扩展、智能化的系统,为数据科学和机器学习领域的研究和应用提供了强大的支持。
请添加图片描述

AIGC(人工智能生成内容)全生命周期管理的MaaS(基础设施即服务)底座主流架构。

整个架构自上而下分为几个关键层次,每个层次都承载着不同的技术和工具,共同支持AIGC的全生命周期管理。

  • 在应用层,我们可以看到一系列模型应用,如LLM(大型语言模型)、NLU(自然语言理解)、CV(计算机视觉)、NLP(自然语言处理)和Audio(音频处理),这些应用通过Python等开发语言进行开发,以满足各种AI应用需求。
  • 接下来是生态层,这里包含了DeepSpeed、Magnum.LM、Caffe.AI、HuggingFace等生态框架,以及Large.Bench、HC.CloudVector等大模型工具,这些工具和框架共同构建了一个丰富的AI生态,为上层应用提供了强大的支持。
  • 在框架层,PyTorch、TensorFlow、Caffe、Mindspore、JAX等AI框架以及Mapbox等地理引擎为开发者提供了灵活的构建选项,使得AI应用的开发更加高效和便捷。
  • 编译层则包含了TVM、Glow、XLA、TensorRT等AI编译器和GCC等传统编译器,这些编译器负责将高级语言编写的代码转换为机器可以执行的指令,是AI应用从开发到部署的关键环节。
  • 最后,基础架构层是整个架构的基石,包括TPU、GPU、NPU等AI芯片以及RDMA、IB、Ethernet等网络加速器,它们共同构成了强大的计算能力,为上层应用提供了坚实的硬件支持。此外,超级计算集群的引入进一步提升了整个架构的计算能力,使得AI应用能够处理更加复杂和庞大的数据。

整个架构图不仅展示了从应用层到基础架构层的各个组成部分及其相互关系,还强调了MaaS(一切即服务)的理念,即在云原生架构下,提供各种AI服务,以满足不同场景下的AI应用需求。请添加图片描述

AIGC(人工智能生成内容)的全生命周期管理过程及其在组织中的应用结构

在AIGC的全生命周期管理中,首先涉及的是基础大模型的构建,这主要基于LLMs(大型语言模型)。随后,为了满足特定领域的需求,会在基础大模型的基础上结合特定领域的知识和数据,形成垂直大模型

进入模型训练阶段,后端程序利用Fine-tune/RAG等框架和工具对大模型进行微调或适应特定任务。同时,通过可视化或交互式的方式,前端程序展示后端程序的结果,并利用AI Agent进行用户交互。

在AIGC应用组织中,基础大模型、垂直大模型、后端程序以及前端程序各自占据50%的能力,而AI Agent则独立占据10%的能力,凸显了其在交互环节中的重要性。

技术栈方面,基础大模型依赖于公有云MaaS API,后端程序则采用LangChain、DeFi、Comexe等技术,前端程序则利用RAG、FeCloudVector等工具,而整个流程则由Prompt engine作为引擎驱动。

从基础大模型构建到前端程序应用的完整流程,强调了AI Agent在提升用户体验和交互效果中的关键作用。请添加图片描述

AIGC(人工智能生成内容)的全生命周期管理及其应用的全流程优化过程

整个流程从业务数据的收集开始,包括结构化数据和非结构化数据的处理,随后进入数据切分和汇聚阶段,确保数据的有效利用。

在数据准备阶段,数据被切分为适合模型训练的片段,并通过Embedding技术入库,形成业务数据集。同时,数据汇聚过程涉及标签数据存储、向量数据存储以及向量索引管理,为后续的模型开发和应用提供坚实基础。

AIGC开发框架作为核心,提供了丰富的插件支持,确保AIGC应用的顺利开发。通过向量数据库接口调用,AIGC应用能够接入金融知识库、智能客服等多个领域,实现广泛的应用场景。

在AIGC应用的全流程优化中,模型创建、训练、测试、优化、部署和发布等步骤紧密相连,形成了一套完整的模型生命周期管理流程。模型评测和微调环节通过测试集、测试参数和结果分析等手段,确保模型的性能达到最优。

此外,模型运行阶段涉及资源分配、模型实例以及服务信息的管理,确保模型在实际应用中能够高效、稳定地运行。

最后,图表还提到了模型应用的其他方面,如API接口、模型评估和RAG等,为模型的进一步应用提供了更多可能性。整个流程以MaaS(模型即服务)底座为基础,为AIGC的全生命周期管理和应用提供了强大的支持。

为AIGC的全生命周期管理和应用的全流程优化提供了清晰的指导,有助于相关团队更好地理解和实施AIGC项目。

欢迎大家关注阿维同学

在这里插入图片描述
VW:AWTX550W

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/749885.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于opencv的图像拼接

利用Python的OpenCV库实现了简单的图像拼接,示例 1. 图像拼接的基本原理 图像拼接主要包括以下几个步骤: 特征检测与匹配:首先,需要在待拼接的图像之间找到匹配的关键点或特征。OpenCV提供了如SIFT、SURF、ORB等特征提取器以及…

05 Pytorch 数据读取 + 二分类模型

05 Pytorch 数据读取 二分类模型05 Pytorch 数据读取 二分类模型05 Pytorch 数据读取 二分类模型 01 数据读取 DataLoader(set作为参数) 02 Dataset 从哪读,怎么读? 功能:数据从哪里读取? 如何读取…

Windows的内核对象

内核对象句柄特定于进程。 也就是说,进程必须创建 对象或打开现有对象以获取内核对象句柄。 内核句柄上的每个进程限制为 2^24。 但是,句柄存储在分页池中,因此可以创建的实际句柄数取决于可用内存。 可以在 32 位 Windows 上创建的句柄数明显低于 2^24。 任何进程都可以为…

苹果应用Testflight上架完整步聚

1.全部选中下图内容,包含iPhone与iPad屏幕所有旋转方向 2. 准备App图标,一定要有152和167这个尺寸,不然后提交不过 3.1024这个尺寸的的图像不能有透明层,不然提交不通过 4.选中编译设备为Any iOS Device[arm64] 5.选择Product下的Archive进行生成 6.在弹出的窗口中选择Test…

娱乐巨擘的员工新宠:工会数字平台塑造工作新风尚

当魔法城堡的灯光熄灭,超级英雄摘下头套,游乐园的职工们开始下班了。 乐园为游客送去了欢声笑语,员工却要在夜幕降临后面对一场心理戒断,而这一幕几乎每天都要上演。 不过,在全球知名影城度假区内,最近这…

视频技术朝着8K超高清方向发展,安防监控领域将迎来怎样变化?

一、背景 随着科技的日新月异,视频技术已逐渐成为我们日常生活中不可或缺的一部分。从娱乐、教育到安全监控,视频技术无处不在,并以其独特的方式影响着我们的生活方式。本文将探讨视频技术的发展趋势,并重点关注其在监控领域的应…

老板电器 45 年的烹饪经验,浓缩在这款烹饪大模型中

在科技不断进步的时代,人工智能(AI)迅速成为推动各行各业发展的重要力量。家电行业也不例外,根据 Gartner 的报告预测,到 2024 年,AI 家电市场的规模将达到万亿美元级别。这一预估凸显了智能化在家电行业中…

计算机组成原理(二)——数据的表示和运算

二、数据的表示和运算 2.1 数制与编码 2.1.1进位计数制 十进制计数法 有0~9,共10种符号,逢十进一 r进制计数法 基数:每个数码位所用到的不同符号的个数,r进制的基数为r 二进制:0,1 ①可使用两个稳定状态的物理器件表示 ②0,1正…

【移动应用开发期末复习】第五/六章例题

系列文章 第一章——Android平台概述 第一章例题 第二章——Android开发环境 第二章例题 第三章 第三章例题 第四章 第五/六章 系列文章RadioGroup 是一个Android特有的布局容器,用于包含多个RadioButton组件。当用户选择其中一个RadioButton时,RadioGroup会自动取消其他Rad…

po文件并转换成mo文件

po文件转换成mo文件 简介 .po和.mo文件是WordPress中语言相关的两种文件。po 是Portable Object(可移植对象)的缩写,存放待翻译的字符串信息,可直接用文本编辑器打开编辑;mo 是Machine Object的缩写,二进制文件,程序…

OverTheWire Bandit 靶场通关解析(上)

介绍 OverTheWire Bandit 是一个针对初学者设计的网络安全挑战平台,旨在帮助用户掌握基本的命令行操作和网络安全技能。Bandit 游戏包含一系列的关卡,每个关卡都需要解决特定的任务来获取进入下一关的凭证。通过逐步挑战更复杂的问题,用户可…

word图题表题公式按照章节编号(不用题注)

预期效果: 其中3表示第三章,4表示第3章里的第4个图。标题、公式编号也是类似的。 为了达到这种按照章节编号的效果,原本可以用插入题注里的“包含章节编号” 但实际情况是,这不仅需要一级标题的序号是用“开始->多级列表”自动…

积分的可视化

积分的可视化 flyfish 考虑平方根函数 f ( x ) x f(x) \sqrt{x} f(x)x ​,其中 x ∈ [ 0 , 1 ] x \in [0, 1] x∈[0,1] 。在区间 [ 0 , 1 ] [0, 1] [0,1] 上,函数 f f f 下方的面积是指函数 y f ( x ) y f(x) yf(x) 的图像与 x x x 轴之间的部…

一个例子理解傅里叶变换的计算过程

假设我们有一个简单的信号,由两个不同频率的正弦波组成,我们希望通过傅里叶变换来分析其频谱。 示例信号 假设我们有一个信号 : 这个信号由两个频率成分组成:一个50 Hz的正弦波和一个120 Hz的正弦波,后者的振幅是前者…

【C++】——AVL树(详细解读)

目录 一 AVL树的概念 二 AVL树节点的定义 三 AVL树的插入 1.先和搜索二叉树一样,去找插入的结点 2.插入的时候,需要更新平衡因子 3.确定平衡因子的改变,判断AVL树的改变 三 AVL树的旋转 左单旋 右单旋 右左双旋 左右双旋 四 …

学校机器该maven环境

在学校机器上 安装maven配置idea中的maven 后,发现无法运行, 推测是学校电脑上idea版本和我们下的maven 可能不太匹配。 学校的电脑上idea有集成的maven,但默认配置是访问国外的服务器 解决办法: 下载分享给各位同学的压缩包m…

【工具分享】ToolsFx

文章目录 ToolsFx介绍如何安装如何运行运行截图 ToolsFx介绍 基于kotlintornadoFx的跨平台密码学工具箱,包含编解码、编码转换、加解密、哈希、MAC、签名、大数运算、压缩、二维码功能、CTF等实用功能,支持插件。 如何安装 GitHub:https:/…

GPT-5对普通人有何影响

这篇文章对ChatGPT的使用方法和提问技巧进行了讨论,重点强调了背景信息和具体提问的重要性。文章清晰地传达了如何提高ChatGPT回答的质量,以及个人在使用ChatGPT时的体会和建议。然而,文章在逻辑组织和表达方面还有一些可以改进的地方&#x…

C# 异步编程详解(Task,async/await)

文章目录 1.什么是异步2.Task 产生背景3.Thread(线程) 和 Task(异步)的区别3.1 几个名词3.2 Thread 与 Task 的区别 4.Task API4.1 创建和启动任务4.2 Task 等待、延续和组合4.3 task.Result4.4 Task.Delay() 和 Thread.Sleep() 区别 5.CancellationToken 和 CancellationToken…

Linux-笔记 使用SCP命令传输文件报错 :IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

前言 使用scp命令向开发板传输文件发生报错&#xff0c;报错见下图; 解决 rm -rf /home/<用户名>/.ssh/known_hosts 此方法同样适用于使用ssh命令连接开发板报错的情况。 参考 https://blog.csdn.net/westsource/article/details/6636096