时序预测 | MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测
目录
- 时序预测 | MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测
- 预测效果
- 基本介绍
- 程序设计
- 学习总结
- 参考资料
预测效果
基本介绍
时序预测 | MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测;
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。
程序设计
- 完整源码和数据获取方式1:私信博主回复WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测,同等价值程序兑换;
- 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%% 获取最优种群
for j = 1 : SearchAgents
if(fitness_new(j) < GBestF)
GBestF = fitness_new(j);
GBestX = X_new(j, :);
end
end
%% 更新种群和适应度值
pop_new = X_new;
fitness = fitness_new;
%% 更新种群
[fitness, index] = sort(fitness);
for j = 1 : SearchAgents
pop_new(j, :) = pop_new(index(j), :);
end
%% 得到优化曲线
curve(i) = GBestF;
avcurve(i) = sum(curve) / length(curve);
end
%% 得到最优值
Best_pos = GBestX;
Best_score = curve(end);
%% 得到最优参数
NumOfUnits =abs(round( Best_pos(1,3))); % 最佳神经元个数
InitialLearnRate = Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
%
inputSize = k;
outputSize = 1; %数据输出y的维度
% 参数设置
opts = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 20, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', InitialLearnRate, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod', 6, ... % 训练次后开始调整学习率
'LearnRateDropFactor',0.2, ... % 学习率调整因子
'L2Regularization', L2Regularization, ... % 正则化参数
'ExecutionEnvironment', 'gpu',... % 训练环境
'Verbose', 0, ... % 关闭优化过程
'SequenceLength',1,...
'MiniBatchSize',10,...
'Plots', 'training-progress'); % 画出曲线
学习总结
鲸鱼算法(Whale Optimization Algorithm,WOA)是一种基于自然界中鲸鱼群体行为的优化算法,可以用于解决优化问题。而卷积双向长短期记忆神经网络(CNN-BiLSTM)是一种结合了卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的网络结构,能够处理序列数据和空间数据,多输入单输出回归预测是指输入多个特征,输出一个数值的回归问题。
下面是使用鲸鱼算法优化卷积双向长短期记忆神经网络多输入单输出回归预测的步骤:
首先,需要确定网络的结构,包括卷积层、BiLSTM层、全连接层等。
然后,需要定义适应度函数,即网络在训练集上的预测误差。这里可以选择均方误根差(RMSE)作为适应度函数。
接下来,可以使用鲸鱼算法进行参数优化。具体来说,可以将CNN-BiLSTM网络的参数作为优化变量,将适应度函数作为目标函数,使用鲸鱼算法进行迭代优化,直到目标函数收敛或达到预设的迭代次数。
在优化过程中,需要设置好鲸鱼算法的参数,包括优化正则化率、学习率、隐藏层单元数等。
最后,可以使用优化后的CNN-BiLSTM网络进行多输入单输出回归预测。
需要注意的是,鲸鱼算法虽然可以用于优化神经网络,但并不是万能的,也存在局限性。在使用鲸鱼算法进行优化时,需要根据具体问题进行调参和优化,以获得更好的优化效果。
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501