TCP消息传输可靠性保证

TCP链接与断开 -- 三次握手&四次挥手

三次握手

TCP 提供面向有连接的通信传输。面向有连接是指在数据通信开始之前先做好两端之间的准备工作。

所谓三次握手是指建立一个 TCP 连接时需要客户端和服务器端总共发送三个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发。

第一次握手:客户端将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给服务器端,客户端进入SYN_SENT状态,等待服务器端确认。

第二次握手:服务器端收到数据包后由标志位SYN=1知道客户端请求建立连接,服务器端将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给客户端以确认连接请求,服务器端进入SYN_RCVD状态。

第三次握手:客户端收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给服务器端,服务器端检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,客户端和服务器端进入ESTABLISHED状态,完成三次握手,随后客户端与服务器端之间可以开始传输数据了。

四次挥手

四次挥手即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发。

由于TCP连接是全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭。

1. 客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

2. 服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

3. 客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

4. 服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

5. 客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

6. 服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

TCP/IP中的数据包

每个分层中,都会对所发送的数据附加一个首部,在这个首部中包含了该层必要的信息,如发送的目标地址以及协议相关信息。通常,为协议提供的信息为包首部,所要发送的内容为数据。在下一层的角度看,从上一层收到的包全部都被认为是本层的数据。

网络中传输的数据包由两部分组成:一部分是协议所要用到的首部,另一部分是上一层传过来的数据。首部的结构由协议的具体规范详细定义。在数据包的首部,明确标明了协议应该如何读取数据。反过来说,看到首部,也就能够了解该协议必要的信息以及所要处理的数据。

· ① 应用程序处理
首先应用程序会进行编码处理,这些编码相当于 OSI 的表示层功能;
编码转化后,邮件不一定马上被发送出去,这种何时建立通信连接何时发送数据的管理功能,相当于 OSI 的会话层功能。

· ② TCP 模块的处理
TCP 根据应用的指示,负责建立连接、发送数据以及断开连接。TCP 提供将应用层发来的数据顺利发送至对端的可靠传输。为了实现这一功能,需要在应用层数据的前端附加一个 TCP 首部。

· ③ IP 模块的处理
IP 将 TCP 传过来的 TCP 首部和 TCP 数据合起来当做自己的数据,并在 TCP 首部的前端加上自己的 IP 首部。IP 包生成后,参考路由控制表决定接受此 IP 包的路由或主机。

· ④ 网络接口(以太网驱动)的处理
从 IP 传过来的 IP 包对于以太网来说就是数据。给这些数据附加上以太网首部并进行发送处理,生成的以太网数据包将通过物理层传输给接收端。

· ⑤ 网络接口(以太网驱动)的处理
主机收到以太网包后,首先从以太网包首部找到 MAC 地址判断是否为发送给自己的包,若不是则丢弃数据。
如果是发送给自己的包,则从以太网包首部中的类型确定数据类型,再传给相应的模块,如 IP、ARP 等。这里的例子则是 IP 。

· ⑥ IP 模块的处理
IP 模块接收到 数据后也做类似的处理。从包首部中判断此 IP 地址是否与自己的 IP 地址匹配,如果匹配则根据首部的协议类型将数据发送给对应的模块,如 TCP、UDP。这里的例子则是 TCP。
另外吗,对于有路由器的情况,接收端地址往往不是自己的地址,此时,需要借助路由控制表,在调查应该送往的主机或路由器之后再进行转发数据。

· ⑦ TCP 模块的处理
在 TCP 模块中,首先会计算一下校验和,判断数据是否被破坏。然后检查是否在按照序号接收数据。最后检查端口号,确定具体的应用程序。数据被完整地接收以后,会传给由端口号识别的应用程序。

· ⑧ 应用程序的处理
接收端应用程序会直接接收发送端发送的数据。通过解析数据,展示相应的内容。

TCP 中通过序列号与确认应答提高可靠性

在 TCP协议头中,当发送端的数据到达接收主机时,接收端主机会返回一个已收到消息的通知。这个消息叫做确认应答(ACK)。当发送端将数据发出之后会等待对端的确认应答。如果有确认应答,说明数据已经成功到达对端。反之,则数据丢失的可能性很大。

在一定时间内没有等待到确认应答,发送端就可以认为数据已经丢失,并进行重发。由此,即使产生了丢包,仍然能够保证数据能够到达对端,实现可靠传输。

未收到确认应答并不意味着数据一定丢失。也有可能是数据对方已经收到,只是返回的确认应答在途中丢失。这种情况也会导致发送端误以为数据没有到达目的地而重发数据。

此外,也有可能因为一些其他原因导致确认应答延迟到达,在源主机重发数据以后才到达的情况也屡见不鲜。此时,源主机只要按照机制重发数据即可。

对于目标主机来说,反复收到相同的数据是不可取的。为了对上层应用提供可靠的传输,目标主机必须放弃重复的数据包。为此我们引入了序列号。

序列号是按照顺序给发送数据的每一个字节(8位字节)都标上号码的编号。接收端查询接收数据 TCP 首部中的序列号和数据的长度,将自己下一步应该接收的序列号作为确认应答返送回去。通过序列号和确认应答号,TCP 能够识别是否已经接收数据,又能够判断是否需要接收,从而实现可靠传输。

TCP协议中得标识位整理

标识位:URG, ACK, PSH, RST, SYN, FIN 共6个每一个标识位都有自己得功能

标识

中文翻译

含义

URG

紧急指针标识

为1标识紧急指针有效,为0则忽略紧急指针

ACK

确认序号标识

为1标识确认号有效,为0表示报文中不含确认消息可忽略确认号属性

PSH

接收信号标识

为1标识带有qush标识得数据指示接收方在收到该报文后,应尽快将该报文交给应用程序而不是在缓冲区排队

SYN

同步序号标识

用于建立连接过程,在请求连接时,SYN=1和ACK=0标识该数据段没有使用捎带的消息确认域,而连接应答捎带一个确认,即SYN=1和ACK=1

FIN

完成标识

用于释放链接,为1表示发送当已经没有数据发送了,即可关闭本次数据流

RST

重置链接标识

用于重置由于主机崩溃或其他原因导致的错误连接,或用于拒绝非法报文段和拒绝连接请求

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/74504.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机组成原理之地址映射

例1:某计算机主存容量256MB,按字编址,字长1B,块大小32B,Cache容量512KB。对如下的直接映射方式、4-路组相联映射方式、全相联映射方式的内存地址格式,求: (1)计算A、B、C…

05 - 研究 .git 目录

查看所有文章链接:(更新中)GIT常用场景- 目录 文章目录 1. HEAD2. config3. refs4. objects 1. HEAD 2. config 3. refs 4. objects Git对象一共有三种:数据对象 blob、树对象 tree以及提交对象 commit,这些对象都被保…

详谈数据库InnoDB引擎与MyISAM引擎

目录 1. 简单了解什么是存储引擎? 2. InnoDB 引擎概述 3. MyISAM 引擎概述 4. InnoDB 与 MyISAM 的一些区别 1. 简单了解什么是存储引擎? 相信很多人在听到存储引擎这个名字的时候可能会有些疑惑,听着名字就觉得有些难,导致很多人没有兴趣了解它&a…

使用基于jvm-sandbox的对三层嵌套类型的改造

使用基于jvm-sandbox的对三层嵌套类型的改造 问题背景 先简单介绍下基于jvm-sandbox的imock工具,是Java方法级别的mock,操作就是监听指定方法,返回指定的mock内容。 jvm-sandbox 利用字节码操作和自定义类加载器的技术,将原始方法…

el-table实现静态和动态合并单元格 以及内容显示的问题

实现效果图 <el-tablev-loading"loading":data"tableData"style"width: 100%":row-class-name"tableRowClassName"size"small"><el-table-column fixed label"序号" width"50"><el-tab…

文本分类实战-NLP

数据集及任务分析 项目主题&#xff1a;新闻的主题分类&#xff0c;10分类任务 一般对于NLP项目来说的话需要进行数据预处理的&#xff0c;但是由于本项目的数据是经过处理过的&#xff0c;所以就不需要进行数据预处理了&#xff0c;但是数据预处理对NLP项目是重中之重的。 TH…

【Linux】高级IO

目录 IO的基本概念 钓鱼五人组 五种IO模型 高级IO重要概念 同步通信 VS 异步通信 阻塞 VS 非阻塞 其他高级IO 阻塞IO 非阻塞IO IO的基本概念 什么是IO&#xff1f; I/O&#xff08;input/output&#xff09;也就是输入和输出&#xff0c;在著名的冯诺依曼体系结构当中…

Python-OpenCV中的图像处理-视频分析

Python-OpenCV中的图像处理-视频分析 视频分析Meanshift算法Camshift算法光流 视频分析 学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象: Meanshift算法 Meanshift 算法的基本原理是和很简单的。假设我们有一堆点&#xff08;比如直方 图反向投影得到的点&…

低代码开发工具:JVS轻应用之间如何实现数据的调用?

在低代码开发平台中&#xff0c;如何实现应用之间的数据共享呢&#xff1f;最标准的方式是通过接口&#xff0c;本文介绍JVS轻应用如何实现将数据通过API输出、轻应用如何实现体内API数据的获取&#xff1f;实现方式如下图所示&#xff0c;不管是数据提供方&#xff0c;还是数据…

接口测试常用代理工具

些代理工具可以帮助我们构造各种测试场景、以及更好的完成测试工作。下面的介绍以 Charles 为主。 Charles Charles 是一款代理服务器&#xff0c;可以截取请求和响应达到分析抓包的目的&#xff0c;且支持多平台&#xff0c;能够在 Windows&#xff0c;Mac&#xff0c;Linux…

Spring Boot 集成 XXL-JOB 任务调度平台

一、下载xxl-job并使用。 二、将xxl-job集成到springboot里 一、 下载xxl-job并使用。 这一步没完成的请参考这个博客&#xff1a;http://t.csdn.cn/lsp4r 二、将xxl-job集成到springboot里 1、引入依赖 <dependency><groupId>org.springframework.boot</group…

Stable Diffusion +EbSynth应用实践和经验分享

Ebsynth应用 1.安装ffmpeg 2.安装pip install transparent-background,下载模型https://www.mediafire.com/file/gjvux7ys4to9b4v/latest.pth/file 放到C:\Users\自己的用户名.transparent-background\加一个ckpt_base.pth文件 3.秋叶安装ebsynth插件,重启webui 填写项目基本…

CSDN编程题-每日一练(2023-08-14)

CSDN编程题-每日一练&#xff08;2023-08-14&#xff09; 一、题目名称&#xff1a;小股炒股二、题目名称&#xff1a;王子闯闸门三、题目名称&#xff1a;圆小艺 一、题目名称&#xff1a;小股炒股 时间限制&#xff1a;1000ms内存限制&#xff1a;256M 题目描述&#xff1a; …

开学季电容笔怎么选?iPad第三方电容笔了解下

不少的学生党开学必备清单里都少不了电容笔&#xff0c;可见其的重要性。自从苹果发布了ipad的原装电容笔以来&#xff0c;这款电容笔在目前市面上就一直很受欢迎&#xff0c;不过由于Apple Pencil的售价实在是太贵了&#xff0c;使得大部分人都买不起。于是&#xff0c;市面上…

Android中tools属性的使用

参考&#xff1a; 1.Android:Tools命名空间原来是有大用处的 2.Android中tools属性的使用 3.工具属性参考文档 4. 命名空间介绍 5. 注解 6. lint 7. 资源压缩shrink-resources 目录 一、概述二、引入tools命名空间三、tools 命名空间的作用有哪些&#xff1f;四、tools 命名空间…

面试热题(数组中的第K个最大元素)

给定整数数组 nums 和整数 k&#xff0c;请返回数组中第 k 个最大的元素。 请注意&#xff0c;你需要找的是数组排序后的第 k 个最大的元素&#xff0c;而不是第 k 个不同的元素。 输入: [3,2,1,5,6,4] 和 k 2 输出: 5提到数组中最大元素&#xff0c;我们往往想到就是先给数组…

【Linux初阶】system V消息队列 + system V信号量

文章目录 一、system V消息队列&#xff08;了解&#xff09;二、system V信号量&#xff08;了解&#xff09;1.信号量是什么2.临界资源和临界区3.互斥4.为什么要信号量 三、IPC资源的组织方式结语 一、system V消息队列&#xff08;了解&#xff09; 消息队列提供了一个从一…

聊聊JDK1.0到JDK20的那些事儿 | 京东云技术团队

1.前言 最近小组在开展读书角活动&#xff0c;我们小组选的是《深入理解JVM虚拟机》&#xff0c;相信这本书对于各位程序猿们都不陌生&#xff0c;我也是之前在学校准备面试期间大致读过一遍&#xff0c;emm时隔多日&#xff0c;对里面的知识也就模糊了。这次开始的时候从前面…

在Java中对XML的简单应用

XML 数据传输格式1 XML 概述1.1 什么是 XML1.2 XML 与 HTML 的主要差异1.3 XML 不是对 HTML 的替代 2 XML 语法2.1 基本语法2.2 快速入门2.3 组成部分2.3.1 文档声明格式属性 2.3.2 指令&#xff08;了解&#xff09;&#xff1a;结合CSS2.3.3 元素2.3.4 属性**XML 元素 vs. 属…

nginx keepalived 本地二进制部署

文章目录 安装 nginx安装 keepalived卸载 nginx卸载 keepalived 安装 nginx wget http://nginx.org/download/nginx-1.24.0.tar.gz tar -xf nginx-1.24.0.tar.gz cd nginx-1.24.0/ ./configure --with-stream --prefix/usr/local/nginx make && make install修改nginx…