Python-OpenCV中的图像处理-视频分析

Python-OpenCV中的图像处理-视频分析

  • 视频分析
    • Meanshift算法
    • Camshift算法
    • 光流

视频分析

学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象:

Meanshift算法

Meanshift 算法的基本原理是和很简单的。假设我们有一堆点(比如直方
图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗
口移动到最大灰度密度处(或者是点最多的地方)。如下图所示:
在这里插入图片描述
初始窗口是蓝色的“C1”,它的圆心为蓝色方框“C1_o”,而窗口中所有点质心却是“C1_r”(小的蓝色圆圈),很明显圆心和点的质心没有重合。所以移动圆心 C1_o 到质心 C1_r,这样我们就得到了一个新的窗口。这时又可以找到新窗口内所有点的质心,大多数情况下还是不重合的,所以重复上面的操作:将新窗口的中心移动到新的质心。就这样不停的迭代操作直到窗口的中心和其所包含点的质心重合为止(或者有一点小误差)。按照这样的操作我们的窗口最终会落在像素值(和)最大的地方。如上图所示“C2”是窗口的最后位址,我们可以看出来这个窗口中的像素点最多。
要在 OpenCV 中使用 Meanshift 算法首先我们要对目标对象进行设置,
计算目标对象的直方图,这样在执行 meanshift 算法时我们就可以将目标对
象反向投影到每一帧中去了。另外我们还需要提供窗口的起始位置。在这里我
们值计算 H( Hue)通道的直方图,同样为了避免低亮度造成的影响,我们使
用函数 cv2.inRange() 将低亮度的值忽略掉。

import numpy as np
import cv2
from matplotlib import pyplot as plt
# 视频下载地址https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4
cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')

ret,frame = cap.read()

# setup initial location of window
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
track_window = (x, y, w, h)

# set up the ROI for tracking
roi = frame[y:y+h, x:x+w]

hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)

term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)

while(1):
    ret, frame = cap.read()
    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)

        ret, track_window = cv2.meanShift(dst, track_window, term_crit)

        x,y,w,h = track_window
        img2 = cv2.rectangle(frame, (x,y), (x+w, y+h), 255, 2)

        k = cv2.waitKey(60)&0xFF
        if k == 27:
            break
        else:
            cv2.imshow('img', img2)
    else:
        break

cap.release()
cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

Camshift算法

与 Meanshift 基本一样,但是返回的结果是一个带旋转角度的矩形以及这个矩形的参数(被用到下一次迭代过程中)。

import numpy as np
import cv2
from matplotlib import pyplot as plt
# 视频下载地址https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4
cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')

# take first frame of the video
ret, frame = cap.read()

# setup initial location of window
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
track_window = (x, y, w, h)
# set up the ROI for tracking
roi = frame[y:y+h, x:x+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
# Setup the termination criteria, either 10 iteration or move by at least 1 pt
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )

while(1):
    ret, frame = cap.read()
    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
        # apply camshift to get the new location
        ret, track_window = cv2.CamShift(dst, track_window, term_crit)
        # Draw it on image
        pts = cv2.boxPoints(ret)
        pts = np.int0(pts)
        img2 = cv2.polylines(frame,[pts],True, 255,2)
        k = cv2.waitKey(30) & 0xff
        if k == 27:
            break
        else:
            cv2.imshow('img2',img2)
    else:
        cap.release()
        cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

光流

  • 光流的概念以及 Lucas-Kanade 光流法
  • 函数 cv2.calcOpticalFlowPyrLK() 对图像中的特征点进行跟踪

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/74492.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

低代码开发工具:JVS轻应用之间如何实现数据的调用?

在低代码开发平台中,如何实现应用之间的数据共享呢?最标准的方式是通过接口,本文介绍JVS轻应用如何实现将数据通过API输出、轻应用如何实现体内API数据的获取?实现方式如下图所示,不管是数据提供方,还是数据…

接口测试常用代理工具

些代理工具可以帮助我们构造各种测试场景、以及更好的完成测试工作。下面的介绍以 Charles 为主。 Charles Charles 是一款代理服务器,可以截取请求和响应达到分析抓包的目的,且支持多平台,能够在 Windows,Mac,Linux…

Spring Boot 集成 XXL-JOB 任务调度平台

一、下载xxl-job并使用。 二、将xxl-job集成到springboot里 一、 下载xxl-job并使用。 这一步没完成的请参考这个博客&#xff1a;http://t.csdn.cn/lsp4r 二、将xxl-job集成到springboot里 1、引入依赖 <dependency><groupId>org.springframework.boot</group…

Stable Diffusion +EbSynth应用实践和经验分享

Ebsynth应用 1.安装ffmpeg 2.安装pip install transparent-background,下载模型https://www.mediafire.com/file/gjvux7ys4to9b4v/latest.pth/file 放到C:\Users\自己的用户名.transparent-background\加一个ckpt_base.pth文件 3.秋叶安装ebsynth插件,重启webui 填写项目基本…

CSDN编程题-每日一练(2023-08-14)

CSDN编程题-每日一练&#xff08;2023-08-14&#xff09; 一、题目名称&#xff1a;小股炒股二、题目名称&#xff1a;王子闯闸门三、题目名称&#xff1a;圆小艺 一、题目名称&#xff1a;小股炒股 时间限制&#xff1a;1000ms内存限制&#xff1a;256M 题目描述&#xff1a; …

开学季电容笔怎么选?iPad第三方电容笔了解下

不少的学生党开学必备清单里都少不了电容笔&#xff0c;可见其的重要性。自从苹果发布了ipad的原装电容笔以来&#xff0c;这款电容笔在目前市面上就一直很受欢迎&#xff0c;不过由于Apple Pencil的售价实在是太贵了&#xff0c;使得大部分人都买不起。于是&#xff0c;市面上…

Android中tools属性的使用

参考&#xff1a; 1.Android:Tools命名空间原来是有大用处的 2.Android中tools属性的使用 3.工具属性参考文档 4. 命名空间介绍 5. 注解 6. lint 7. 资源压缩shrink-resources 目录 一、概述二、引入tools命名空间三、tools 命名空间的作用有哪些&#xff1f;四、tools 命名空间…

面试热题(数组中的第K个最大元素)

给定整数数组 nums 和整数 k&#xff0c;请返回数组中第 k 个最大的元素。 请注意&#xff0c;你需要找的是数组排序后的第 k 个最大的元素&#xff0c;而不是第 k 个不同的元素。 输入: [3,2,1,5,6,4] 和 k 2 输出: 5提到数组中最大元素&#xff0c;我们往往想到就是先给数组…

【Linux初阶】system V消息队列 + system V信号量

文章目录 一、system V消息队列&#xff08;了解&#xff09;二、system V信号量&#xff08;了解&#xff09;1.信号量是什么2.临界资源和临界区3.互斥4.为什么要信号量 三、IPC资源的组织方式结语 一、system V消息队列&#xff08;了解&#xff09; 消息队列提供了一个从一…

聊聊JDK1.0到JDK20的那些事儿 | 京东云技术团队

1.前言 最近小组在开展读书角活动&#xff0c;我们小组选的是《深入理解JVM虚拟机》&#xff0c;相信这本书对于各位程序猿们都不陌生&#xff0c;我也是之前在学校准备面试期间大致读过一遍&#xff0c;emm时隔多日&#xff0c;对里面的知识也就模糊了。这次开始的时候从前面…

在Java中对XML的简单应用

XML 数据传输格式1 XML 概述1.1 什么是 XML1.2 XML 与 HTML 的主要差异1.3 XML 不是对 HTML 的替代 2 XML 语法2.1 基本语法2.2 快速入门2.3 组成部分2.3.1 文档声明格式属性 2.3.2 指令&#xff08;了解&#xff09;&#xff1a;结合CSS2.3.3 元素2.3.4 属性**XML 元素 vs. 属…

nginx keepalived 本地二进制部署

文章目录 安装 nginx安装 keepalived卸载 nginx卸载 keepalived 安装 nginx wget http://nginx.org/download/nginx-1.24.0.tar.gz tar -xf nginx-1.24.0.tar.gz cd nginx-1.24.0/ ./configure --with-stream --prefix/usr/local/nginx make && make install修改nginx…

使用 VScode 开发 ROS 的Python程序(简例)

一、任务介绍 本篇作为ROS学习的第二篇&#xff0c;是关于如何在Ubuntu18.04中使用VSCode编写一个Python程序&#xff0c;输出“Hello&#xff01;”的内容介绍。 首先我们来了解下ROS的文件系统&#xff0c;ROS文件系统级指的是在硬盘上ROS源代码的组织形式&#xff0c;其结构…

华为OD机试 - 查找众数及中位数(Java 2023 B卷 100分)

目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路五、Java算法源码六、效果展示1、输入2、输出3、说明 华为OD机试 2023B卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;A卷B卷&#…

变压器故障诊断(python代码,逻辑回归/SVM/KNN三种方法同时使用,有详细中文注释)

代码运行要求&#xff1a;tensorflow版本>2.4.0,Python>3.6.0即可&#xff0c;无需修改数据路径。 1.数据集介绍&#xff1a; 采集数据的设备照片 变压器在电力系统中扮演着非常重要的角色。尽管它们是电网中最可靠的部件&#xff0c;但由于内部或外部的许多因素&#…

《Linux从练气到飞升》No.13 Linux进程状态

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的…

2023年国赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录 0 赛题思路1 算法介绍2 FP树表示法3 构建FP树4 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法&#xff0c;就是频繁模…

aspose 使用ftl模板生成word和pdf

1 先找到word模板&#xff0c;用${}&#xff0c;替换变量&#xff0c;保存&#xff0c;然后另存为xml,最后把xml后缀改成ftl。 如下图&#xff1a; word 模板文件 ftl模板文件如下: 2 代码生成 下面函数将ftl填充数据&#xff0c;并生成word和pdf /*** * param dataMap 模板…

找到链表的第一个入环节点

1.题目 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统…

Docker 基本管理(一)

目录 一、虚拟化简介 1.1.虚拟化概述 1.2.cpu的时间分片&#xff08;cpu虚拟化&#xff09; 1.3.cpu虚拟化性性能瓶颈 1.4.虚拟化工作原理 1.5 虚拟化类型 1.6 虚拟化功能 ​二、Docker容器概述 2.1 docker是什么&#xff1f; 2.2 使用docker有什么意义&#xff…