2023年国赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)


def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1

    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]

    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable


def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])

    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)


def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/74466.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

aspose 使用ftl模板生成word和pdf

1 先找到word模板&#xff0c;用${}&#xff0c;替换变量&#xff0c;保存&#xff0c;然后另存为xml,最后把xml后缀改成ftl。 如下图&#xff1a; word 模板文件 ftl模板文件如下: 2 代码生成 下面函数将ftl填充数据&#xff0c;并生成word和pdf /*** * param dataMap 模板…

找到链表的第一个入环节点

1.题目 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统…

Docker 基本管理(一)

目录 一、虚拟化简介 1.1.虚拟化概述 1.2.cpu的时间分片&#xff08;cpu虚拟化&#xff09; 1.3.cpu虚拟化性性能瓶颈 1.4.虚拟化工作原理 1.5 虚拟化类型 1.6 虚拟化功能 ​二、Docker容器概述 2.1 docker是什么&#xff1f; 2.2 使用docker有什么意义&#xff…

正则表达式试炼

序 我希望在这里列出我很多想写的正则表达式&#xff0c;很多我想写&#xff0c;但是不知道怎么写的。分享点滴案例。未来这个文章会越来越长 前言 互联网时代&#xff0c;除了文本还有更好的学习方式&#xff0c;下面是几个不错的练习网站&#xff0c;如果你想系统地学习&a…

【C语言实战项目】通讯录

一.了解项目功能 在本次实战项目中我们的目标是实现一个通讯录: 该通讯录可以用来存储1000个人的信息 每个人的信息包括&#xff1a;姓名、年龄、性别、住址、电话 通讯录提供功能有&#xff1a; 添加联系人信息删除指定联系人信息查找指定联系人信息修改指定联系人信息显示所有…

python中两个数据框之间的遍历

1.输入文件1 文件1&#xff1a;第一列是基因名字&#xff0c;列2&#xff1a;外显子起始位置&#xff0c;列3&#xff1a;外显子终止位置&#xff0c;列4&#xff1a;外显子的序号 2.输入文件2&#xff1a; 备注&#xff1a;列1&#xff1a;基因id&#xff1b;列2&#xff1a;…

Verdi_如何dump信号的驱动强度

Verdi_如何dump信号的驱动强度 需求背景 在Verilog语法标准中&#xff0c;0和1各自被分成了8个强度等级&#xff1b; Strength NameStrength NameStrength Levelsupply 0supply 17strong 0strong 16pull 0pull 15large 0large 14weak 0weak 13medium 0medium 12small 0small…

软件测试用例设计方法之因果图法

基本概念 因果图是一种利用图解法分析输入的各种组合情况&#xff0c;从而设计测试用例的方法&#xff0c;它适合于检查程序输入条件的各种组合情况。 设计测试用例的步骤 分析软件规格说明描述中, 哪些是原因(即输入条件或输入条件的等价类),哪些是结果(即输出条件), 并给每…

『C语言初阶』第九章 -结构体

前言 今天小羊又来给铁汁们分享关于C语言的结构体&#xff0c;在C语言中&#xff0c;结构体类型属于一种构造类型&#xff08;其他的构造类型还有&#xff1a;数组类型&#xff0c;联合类型&#xff09;&#xff0c;今天我们主要简单了解一下结构体。 一、结构体是什么&#x…

Redis_缓存1_缓存类型

14.redis缓存 14.1简介 穿透型缓存&#xff1a; 缓存与后端数据交互在一起&#xff0c;对服务端的调用隐藏细节。如果从缓存中可以读到数据&#xff0c;就直接返回&#xff0c;如果读不到&#xff0c;就到数据库中去读取&#xff0c;从数据库中读到数据&#xff0c;也是先更…

基于微服务+Java+Spring Cloud +Vue+UniApp +MySql实现的智慧工地云平台源码

基于微服务JavaSpring Cloud VueUniApp MySql开发的智慧工地云平台源码 智慧工地概念&#xff1a; 智慧工地就是互联网建筑工地&#xff0c;是将互联网的理念和技术引入建筑工地&#xff0c;然后以物联网、移动互联网技术为基础&#xff0c;充分应用BIM、大数据、人工智能、移…

node.js+Vue+Express学生宿舍校舍系统-ggr80

关键词&#xff1a;智慧学生校舍&#xff1b;简洁方便直观&#xff1b; 本次的毕业设计主要就是设计并开发一个智慧学生校舍系统。使用数据库mysql。系统主要包括个人中心、学生管理、教师管理、宿管管理、外来人员管理、维修人员管理、学生信息管理、学生签到管理、学生物品管…

因果推断(四)断点回归(RD)

因果推断&#xff08;四&#xff09;断点回归&#xff08;RD&#xff09; 在传统的因果推断方法中&#xff0c;有一种方法可以控制观察到的混杂因素和未观察到的混杂因素&#xff0c;这就是断点回归&#xff0c;因为它只需要观察干预两侧的数据&#xff0c;是否存在明显的断点…

利用ChatGPT绘制思维导图——以新能源汽车竞品分析报告为例

随着人们对环境保护的日益关注和传统燃油汽车的限制&#xff0c;全球范围内对新能源汽车的需求不断增长。新能源汽车市场的激烈竞争使得了解各个竞品的特点和优劣成为关键。然而&#xff0c;针对这一领域的详尽竞品分析却常常需要大量时间和精力。 在此背景下&#xff0c;人工智…

音视频 vs2017配置FFmpeg

vs2017 ffmpeg4.2.1 一、首先我把FFmpeg整理了一下&#xff0c;放在C盘 二、新建空项目 三、添加main.cpp&#xff0c;将bin文件夹下dll文件拷贝到cpp目录下 #include<stdio.h> #include<iostream>extern "C" { #include "libavcodec/avcodec.h&…

【计算机网络】Udp详解

前言 上几文章我们讲解了应用层协议Http和Https&#xff0c;要知道应用层协议有很多&#xff0c;这些都是程序员自己定制的&#xff0c;而真正要传输的时候&#xff0c;是要在操作系统的传输层进行的&#xff0c;今天我们就来学习一下传输层协议Udp的 标识一个通信 要进行跨…

OSI七层模型和TCP/IP四层模型

OSI七层模型和TCP/IP四层模型 七层模型(OSI) OSI七层模型&#xff08;Open Systems Interconnection Reference Model&#xff09;是一个用于计算机网络体系结构的标准化框架&#xff0c;旨在定义网络通信中不同层次的功能和协议。 各个层次具体如下&#xff1a; 物理层&am…

MongoDB的下载和安装

一、MongoDB下载 下载地址&#xff1a;https://www.mongodb.com/try/download/community 二、安装 因为选择下载的是 .zip 文件&#xff0c;直接跳过安装&#xff0c;一步到位。 选择在任一磁盘创建空文件夹&#xff08;不要使用中文路径&#xff09;&#xff0c;解压之后把…

DaVinci Resolve Studio 18 for Mac 达芬奇调色

DaVinci Resolve Studio 18是一款专业的视频编辑和调色软件&#xff0c;适用于电影、电视节目、广告等各种视觉媒体的制作。它具有完整的后期制作功能&#xff0c;包括剪辑、调色、特效、音频处理等。 以下是DaVinci Resolve Studio 18的主要特点&#xff1a; - 提供了全面的视…

nginx一般轮询、加权轮询、ip_hash等负载均衡模式配置介绍

一.负载均衡含义简介 二.nginx负载均衡配置方式 准备三台设备&#xff1a; 2.190均衡服务器&#xff0c;2.191web服务器1&#xff0c;2.160web服务器2&#xff0c;三台设备均安装nginx&#xff0c;两台web服务器均有网页内容 1.一般轮询负载均衡 &#xff08;1&#xff09…