Michael.W基于Foundry精读Openzeppelin第59期——Proxy.sol

Michael.W基于Foundry精读Openzeppelin第59期——Proxy.sol

      • 0. 版本
        • 0.1 Proxy.sol
      • 1. 目标合约
      • 2. 代码精读
        • 2.1 _delegate(address implementation) internal
        • 2.2 _implementation() internal && _beforeFallback() internal
        • 2.3 fallback() && receive()

0. 版本

[openzeppelin]:v4.8.3,[forge-std]:v1.5.6

0.1 Proxy.sol

Github: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.3/contracts/proxy/Proxy.sol

Proxy库对外只暴露了fallback和receive函数,是代理合约的基础实现。所有对Proxy合约的call都将被delegatecall到implement合约并且delegatecall的执行结果会原封不动地返还给Proxy合约的调用方。我们通常称implement合约为代理合约背后的逻辑合约。

1. 目标合约

继承Proxy合约:

Github: https://github.com/RevelationOfTuring/foundry-openzeppelin-contracts/blob/master/src/proxy/MockProxy.sol

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;

import "openzeppelin-contracts/contracts/proxy/Proxy.sol";

contract MockProxy is Proxy {
    address immutable private _IMPLEMENTATION_ADDR;
    bool immutable private _ENABLE_BEFORE_FALLBACK;

    event ProxyBeforeFallback(uint value);

    constructor(
        address implementationAddress,
        bool enableBeforeFallback
    ){
        _IMPLEMENTATION_ADDR = implementationAddress;
        _ENABLE_BEFORE_FALLBACK = enableBeforeFallback;
    }

    function _implementation() internal view override returns (address){
        return _IMPLEMENTATION_ADDR;
    }

    function _beforeFallback() internal override {
        if (_ENABLE_BEFORE_FALLBACK) {
            emit ProxyBeforeFallback(msg.value);
        }
    }
}

全部foundry测试合约:

Github: https://github.com/RevelationOfTuring/foundry-openzeppelin-contracts/blob/master/test/proxy/Proxy/Proxy.t.sol

测试使用的物料合约:

Github: https://github.com/RevelationOfTuring/foundry-openzeppelin-contracts/blob/master/test/proxy/Proxy/Implement.sol

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;

contract Implement {
    uint public i;
    address public addr;
    uint[3] public fixedArray;
    uint[] public dynamicArray;
    mapping(uint => uint) public map;

    event ImplementReceive(uint value);
    event ImplementFallback(uint value);

    function setUint(uint target) external {
        i = target;
    }

    function setUintPayable(uint target) external payable {
        i = target;
    }

    function setAddress(address target) external {
        addr = target;
    }

    function setAddressPayable(address target) external payable {
        addr = target;
    }

    function setFixedArray(uint[3] memory target) external {
        fixedArray = target;
    }

    function setFixedArrayPayable(uint[3] memory target) external payable {
        fixedArray = target;
    }

    function setDynamicArray(uint[] memory target) external {
        dynamicArray = target;
    }

    function setDynamicArrayPayable(uint[] memory target) external payable {
        dynamicArray = target;
    }

    function setMapping(uint key, uint value) external {
        map[key] = value;
    }

    function setMappingPayable(uint key, uint value) external payable {
        map[key] = value;
    }

    function triggerRevert() external pure {
        revert("Implement: revert");
    }

    function triggerRevertPayable() external payable {
        revert("Implement: revert");
    }

    function getPure() external pure returns (string memory){
        return "pure return value";
    }

    receive() external payable {
        emit ImplementReceive(msg.value);
    }

    fallback() external payable {
        emit ImplementFallback(msg.value);
    }
}

2. 代码精读

2.1 _delegate(address implementation) internal

将当前的call,委托调用到implementation地址。

注:通过内联汇编“黑魔法”,使得没有返回值的_delegate()函数可以动态返回delegatecall的返回值。

    function _delegate(address implementation) internal virtual {
        // 内联汇编
        assembly {
            // 从当前calldata的position 0开始将全部calldata都复制到内存中。内存中的数据存储也是从位置0开始。
            // 为何此处使用内存的起始position不是从0x40处取空闲内存指针?原因见后文。
            calldatacopy(0, 0, calldatasize())

            // 使用delegatecall去调用逻辑合约。
            // 第一个参数:调用delegatecall的过程允许使用的gas上限。为gas(),即执行到此处剩余可用的全部gas;
            // 第二个参数:逻辑合约的地址;
            // 第三个参数:delegatecall所携带的calldata相关。calldata是从当前内存中获取,第三个参数为开始载入的内存position;
            // 第四个参数:delegatecall所携带的calldata相关。第四个参数为从内存中读取calldata的字节长度;
            // 综上可知,delegatecall所用的calldata就是进入_delegate(address implementation)时的calldata;
            // 第五个参数:delegatecall得到的返回数据存储在内存中,第五个参数为开始存储返回值的内存position;
            // 第六个参数:delegatecall得到的返回数据存储在内存中的字节长度。
            // 注:由于第五和第六个参数都设为0,即用来存储返回数据的内存长度为0。很明显delegatecall的返回数据长度(如有)要大于设定的存储空间,
            // 此时,全部的返回数据都要用returndatacopy()来复制到内存中。具体细则详见:https://learnblockchain.cn/article/6309
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // 由于delegatecall()时设定的存储返回数据的空间为0,要用returndatacopy()和returndatasize()来获取全部的返回数据。
            // 第一个参数:内存中存储返回数据的起始position,即从position 0处开始存储;
            // 第二个参数:返回数据被复制的起始position,即从头开始复制返回数据;
            // 第三个参数:复制返回数据的字节长度。returndatasize()表示未存储到delegatecall()时设定的存储空间的返回数据字节长度,此时该
            // 值应该为全部返回数据字节长度。
            // 综上可知,delegatecall()得到的全部返回数据都存储到从0开始的内存空间中
            returndatacopy(0, 0, returndatasize())

            // 判断delegatecall是否成功调用
            switch result
            case 0 {
                // 如果delegatecall调用失败(例如gas不足),result为0
                // 那么就直接revert,revert携带的数据为内存中存储的delegatecall的全部返回数据
                revert(0, returndatasize())
            }
            default {
                // 如果非0(即1),表示delegatecall调用成功
                // 那么就进行函数返回,返回值为内存中存储的delegatecall的全部返回数据
                return(0, returndatasize())
            }
        }
    }

为何_delegate()中使用内存的起始position不是从0x40处取空闲内存指针,而是直接从position 0开始?

答:因为在该内联汇编代码块结束时直接进行函数返回,不会再有回到solidity代码逻辑的地方。全部内存都只供汇编代码块使用。只要在内联汇编中手动管理好内存指针,内存就是安全的。

2.2 _implementation() internal && _beforeFallback() internal
  • _implementation():返回逻辑合约的地址。该函数未带实现体,需要在主合约中进行重写;
  • _beforeFallback():执行delegatecall之前会执行的hook函数,如果有需要可以重写该函数并在其中增添逻辑。
    function _implementation() internal view virtual returns (address);

    function _beforeFallback() internal virtual {}

foundry代码验证:

contract ProxyTest is Test {
    Implement private _implement = new Implement();
    address payable private _testingAddress = payable(address(new MockProxy(address(_implement), false)));

    event ImplementFallback(uint value);
    event ImplementReceive(uint value);
    event ProxyBeforeFallback(uint value);

    function test_beforeFallback() external {
        _testingAddress = payable(address(new MockProxy(address(_implement), true)));
        Implement proxy = Implement(_testingAddress);
        uint proxyBalance = _testingAddress.balance;
        assertEq(proxyBalance, 0);
        uint ethValue = 1 wei;

        // case 1: test setUint()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(0);
        proxy.setUint(1024);

        // case 2:test setUintPayable()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(ethValue);
        proxy.setUintPayable{value: ethValue}(1024);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // case 3: test setAddress()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(0);
        proxy.setAddress(address(1));

        // case 4: test setAddressPayable()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(ethValue);
        proxy.setAddressPayable{value: ethValue}(address(1));
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // case 5: test setFixedArray()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(0);
        uint[3] memory targetFixedArray = [uint(1024), 2048, 4096];
        proxy.setFixedArray(targetFixedArray);

        // case 6: test setFixedArrayPayable()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(ethValue);
        proxy.setFixedArrayPayable{value: ethValue}(targetFixedArray);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // case 7: test setDynamicArray()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(0);
        // build dynamic array as input
        uint[] memory targetDynamicArray = new uint[](3);
        targetDynamicArray[0] = 1024;
        targetDynamicArray[1] = 2048;
        targetDynamicArray[2] = 4096;
        proxy.setDynamicArray(targetDynamicArray);

        // case 8: test setDynamicArrayPayable()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(ethValue);
        proxy.setDynamicArrayPayable{value: ethValue}(targetDynamicArray);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // case 9: test setMapping()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(0);
        proxy.setMapping(1024, 2048);

        // case 10: test setMapping()
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(ethValue);
        proxy.setMappingPayable{value: ethValue}(1024, 2048);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // case 11: revert with any static call because it emits event in _beforeFallback()
        // and causes the evm error: "StateChangeDuringStaticCall"
        vm.expectRevert();
        proxy.i();
        vm.expectRevert();
        proxy.addr();
        vm.expectRevert();
        proxy.fixedArray(0);
        vm.expectRevert();
        proxy.dynamicArray(0);
        vm.expectRevert();
        proxy.map(1024);
        vm.expectRevert();
        proxy.triggerRevert();
        vm.expectRevert();
        proxy.getPure();

        // case 12: revert in the function of implement during a call
        vm.expectRevert("Implement: revert");
        proxy.triggerRevertPayable{value: ethValue}();

        // case 13: call the function not exists in the implement
        // and delegate call to the fallback function of implement
        // without value
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(0);
        emit ImplementFallback(0);
        bytes memory calldata_ = abi.encodeWithSignature("unknown()");
        (bool ok,) = _testingAddress.call(calldata_);
        assertTrue(ok);
        // with value
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(ethValue);
        emit ImplementFallback(ethValue);
        (ok,) = _testingAddress.call{value: ethValue}(calldata_);
        assertTrue(ok);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // case 14: call the proxy with empty call data
        // and delegate call to the receive function of implement
        // without value
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(0);
        emit ImplementReceive(0);
        (ok,) = _testingAddress.call("");
        assertTrue(ok);
        // with value
        vm.expectEmit(_testingAddress);
        emit ProxyBeforeFallback(ethValue);
        emit ImplementReceive(ethValue);
        (ok,) = _testingAddress.call{value: ethValue}("");
        assertTrue(ok);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
    }
}
2.3 fallback() && receive()
  • fallback():当本合约被携带calldata的call调用时,进入该函数。随即将该call的calldata直接delegatecall到逻辑合约;
  • receive():当本合约被不携带任何calldata的call调用时,进入该函数。随即直接delegatecall到逻辑合约(不携带任何calldata)。
    fallback() external payable virtual {
        // 调用_fallback()
        _fallback();
    }

    receive() external payable virtual {
        // 调用_fallback()
        _fallback();
    }
    
    // 携带当前对本合约的call的calldata,delegatecall到逻辑合约
    function _fallback() internal virtual {
        // delegatecall之前运行hook函数
        _beforeFallback();
        // 携带当前对本合约的call的calldata,delegatecall到逻辑合约
        _delegate(_implementation());
    }

foundry代码验证:

contract ProxyTest is Test {
    Implement private _implement = new Implement();
    address payable private _testingAddress = payable(address(new MockProxy(address(_implement), false)));

    event ImplementFallback(uint value);
    event ImplementReceive(uint value);

    function test_Call() external {
        Implement proxy = Implement(_testingAddress);
        // case 1: set uint256
        assertEq(proxy.i(), 0);
        assertEq(_implement.i(), 0);

        proxy.setUint(1024);
        // check storage by static call
        assertEq(proxy.i(), 1024);
        assertEq(_implement.i(), 0);
        // check storage by slot number
        bytes32 slotNumber = bytes32(uint(0));
        assertEq(vm.load(_testingAddress, slotNumber), bytes32(uint(1024)));

        // case 2: set address
        assertEq(proxy.addr(), address(0));
        assertEq(_implement.addr(), address(0));

        proxy.setAddress(address(2048));
        // check storage by static call
        assertEq(proxy.addr(), address(2048));
        assertEq(_implement.addr(), address(0));
        // check storage by slot number
        slotNumber = bytes32(uint(1));
        assertEq(vm.load(_testingAddress, slotNumber), bytes32(uint(2048)));

        // case 3: set fixed array
        assertEq(proxy.fixedArray(0), 0);
        assertEq(_implement.fixedArray(0), 0);
        uint[3] memory targetFixedArray = [uint(1024), 2048, 4096];

        proxy.setFixedArray(targetFixedArray);
        for (uint i; i < 3; ++i) {
            // check storage by static call
            assertEq(proxy.fixedArray(i), targetFixedArray[i]);
            assertEq(_implement.fixedArray(i), 0);
            // check storage by slot number
            slotNumber = bytes32(uint(2 + i));
            assertEq(vm.load(_testingAddress, slotNumber), bytes32(targetFixedArray[i]));
        }

        // case 4: set dynamic array
        // revert during static call because dynamic array isn't initialized
        vm.expectRevert();
        proxy.dynamicArray(0);
        vm.expectRevert();
        _implement.dynamicArray(0);
        // build dynamic array as input
        uint[] memory targetDynamicArray = new uint[](3);
        targetDynamicArray[0] = 1024;
        targetDynamicArray[1] = 2048;
        targetDynamicArray[2] = 4096;

        proxy.setDynamicArray(targetDynamicArray);
        for (uint i; i < 3; ++i) {
            // check storage by static call
            assertEq(proxy.dynamicArray(i), targetDynamicArray[i]);
            vm.expectRevert();
            assertEq(_implement.dynamicArray(i), 0);
            // check storage by slot number
            slotNumber = bytes32(uint(keccak256(abi.encodePacked(uint(5)))) + i);
            assertEq(vm.load(_testingAddress, slotNumber), bytes32(targetDynamicArray[i]));
        }

        // case 5: set mapping
        uint key = 1024;
        uint value = 2048;
        assertEq(proxy.map(key), 0);
        assertEq(_implement.map(key), 0);

        proxy.setMapping(key, value);
        // check storage by static call
        assertEq(proxy.map(key), value);
        assertEq(_implement.map(key), 0);
        // check storage by slot number
        slotNumber = bytes32(uint(keccak256(abi.encodePacked(key, uint(6)))));
        assertEq(vm.load(_testingAddress, slotNumber), bytes32(value));

        // case 6: revert with msg
        vm.expectRevert("Implement: revert");
        proxy.triggerRevert();

        // case 7: call pure (staticcall)
        assertEq(proxy.getPure(), "pure return value");

        // case 8: call the function not exists in the implement
        // and delegate call to the fallback function of implement
        vm.expectEmit(_testingAddress);
        emit ImplementFallback(0);
        bytes memory calldata_ = abi.encodeWithSignature("unknown()");
        (bool ok,) = _testingAddress.call(calldata_);
        assertTrue(ok);

        // case 9: call without value and calldata
        // and delegate call to the receive function of implement
        vm.expectEmit(_testingAddress);
        emit ImplementReceive(0);
        (ok,) = _testingAddress.call("");
        assertTrue(ok);
    }

    function test_PayableCall() external {
        Implement proxy = Implement(_testingAddress);
        uint proxyBalance = _testingAddress.balance;
        assertEq(proxyBalance, 0);

        // case 1: set uint256 payable
        assertEq(proxy.i(), 0);
        assertEq(_implement.i(), 0);

        uint ethValue = 1 wei;
        proxy.setUintPayable{value: ethValue}(1024);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // check storage by static call
        assertEq(proxy.i(), 1024);
        assertEq(_implement.i(), 0);
        // check storage by slot number
        bytes32 slotNumber = bytes32(uint(0));
        assertEq(vm.load(_testingAddress, slotNumber), bytes32(uint(1024)));

        // case 2: set address payble
        assertEq(proxy.addr(), address(0));
        assertEq(_implement.addr(), address(0));

        proxy.setAddressPayable{value: ethValue}(address(2048));
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // check storage by static call
        assertEq(proxy.addr(), address(2048));
        assertEq(_implement.addr(), address(0));
        // check storage by slot number
        slotNumber = bytes32(uint(1));
        assertEq(vm.load(_testingAddress, slotNumber), bytes32(uint(2048)));

        // case 3: set fixed array payable
        assertEq(proxy.fixedArray(0), 0);
        assertEq(_implement.fixedArray(0), 0);
        uint[3] memory targetFixedArray = [uint(1024), 2048, 4096];

        proxy.setFixedArrayPayable{value: ethValue}(targetFixedArray);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;
        for (uint i; i < 3; ++i) {
            // check storage by static call
            assertEq(proxy.fixedArray(i), targetFixedArray[i]);
            assertEq(_implement.fixedArray(i), 0);
            // check storage by slot number
            slotNumber = bytes32(uint(2 + i));
            assertEq(vm.load(_testingAddress, slotNumber), bytes32(targetFixedArray[i]));
        }

        // case 4: set dynamic array payable
        // revert during static call because dynamic array isn't initialized
        vm.expectRevert();
        proxy.dynamicArray(0);
        vm.expectRevert();
        _implement.dynamicArray(0);
        // build dynamic array as input
        uint[] memory targetDynamicArray = new uint[](3);
        targetDynamicArray[0] = 1024;
        targetDynamicArray[1] = 2048;
        targetDynamicArray[2] = 4096;

        proxy.setDynamicArrayPayable{value: ethValue}(targetDynamicArray);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;
        for (uint i; i < 3; ++i) {
            // check storage by static call
            assertEq(proxy.dynamicArray(i), targetDynamicArray[i]);
            vm.expectRevert();
            assertEq(_implement.dynamicArray(i), 0);
            // check storage by slot number
            slotNumber = bytes32(uint(keccak256(abi.encodePacked(uint(5)))) + i);
            assertEq(vm.load(_testingAddress, slotNumber), bytes32(targetDynamicArray[i]));
        }

        // case 5: set mapping payable
        uint key = 1024;
        uint value = 2048;
        assertEq(proxy.map(key), 0);
        assertEq(_implement.map(key), 0);

        proxy.setMappingPayable{value: ethValue}(key, value);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;
        // check storage by static call
        assertEq(proxy.map(key), value);
        assertEq(_implement.map(key), 0);
        // check storage by slot number
        slotNumber = bytes32(uint(keccak256(abi.encodePacked(key, uint(6)))));
        assertEq(vm.load(_testingAddress, slotNumber), bytes32(value));

        // case 6: revert with msg payable
        vm.expectRevert("Implement: revert");
        proxy.triggerRevertPayable{value: ethValue}();

        // case 7: call the function not exists in the implement with value
        // and delegate call to the fallback function of implement
        vm.expectEmit(_testingAddress);
        emit ImplementFallback(ethValue);
        bytes memory calldata_ = abi.encodeWithSignature("unknown()");
        (bool ok,) = _testingAddress.call{value: ethValue}(calldata_);
        assertTrue(ok);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
        proxyBalance += ethValue;

        // case 8: call with value and empty callata
        // and delegate call to the receive function of implement
        vm.expectEmit(_testingAddress);
        emit ImplementReceive(ethValue);
        (ok,) = _testingAddress.call{value: ethValue}("");
        assertTrue(ok);
        assertEq(_testingAddress.balance, proxyBalance + ethValue);
    }
}

ps:
本人热爱图灵,热爱中本聪,热爱V神。
以下是我个人的公众号,如果有技术问题可以关注我的公众号来跟我交流。
同时我也会在这个公众号上每周更新我的原创文章,喜欢的小伙伴或者老伙计可以支持一下!
如果需要转发,麻烦注明作者。十分感谢!

在这里插入图片描述

公众号名称:后现代泼痞浪漫主义奠基人

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/737107.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mybatis plus:Wrapper接口

一、介绍 MyBatis-Plus 提供了一套强大的条件构造器&#xff08;Wrapper&#xff09;&#xff0c;用于构建复杂的数据库查询条件。Wrapper 类允许开发者以链式调用的方式构造查询条件&#xff0c;无需编写繁琐的 SQL 语句&#xff0c;从而提高开发效率并减少 SQL 注入的风险。 …

GPT-5大幅推迟?OpenAI CTO称将在2025年底到2026年初推出

GPT-5大幅推迟&#xff1f;OpenAI CTO称将在2025年底到2026年初推出 OpenAI CTO同时透露&#xff0c;GPT-5性能将有巨大飞跃&#xff0c;在某些特定任务中达到“博士水平”智能&#xff0c;此前市场曾预测GPT-5可能在2023年底或2024年夏季发布。 一再跳票的GPT-5可能大幅推迟…

Git客户端安装步骤详解

git windows7 百度经验:jingyan.baidu.com 方法/步骤 1 从git官网下一个git安装包。 步骤阅读 2 点击git.exe安装程序&#xff0c;点击【next】 ![git的安装和配置](https://imgsa.baidu.com/exp/w500/sign7565f44ba58b87d65042ab1f37092860/21a4462309f790525e5b0144…

STM32 Customer BootLoader 刷新项目 (二) 方案介绍

STM32 Customer BootLoader 刷新项目 (二) 方案介绍 文章目录 STM32 Customer BootLoader 刷新项目 (二) 方案介绍1. 需求分析2. STM32 Memery介绍3. BootLoader方案介绍4. 支持指令 1. 需求分析 首先在开始编程之前&#xff0c;我们先详细设计一下BootLoder的方案。 本项目做…

自动驾驶规划中使用 OSQP 进行二次规划 代码原理详细解读

目录 1 问题描述 什么是稀疏矩阵 CSC 形式 QP Path Planning 问题 1. Cost function 1.1 The first term: 1.2 The second term: 1.3 The thrid term: 1.4 The forth term: 对 Qx 矩阵公式的验证 整体 Q 矩阵&#xff08;就是 P 矩阵&#xff0c;二次项的权重矩阵&…

【数据库】六、事务与并发控制(封锁)

六、事务与并发控制 文章目录 六、事务与并发控制1.事务1.1事务的ACID特性1.2MySQL事务控制语句开启事务提交事务回滚事务 2.并发控制2.1并发执行可能引起的问题2.1.1丢失更新2.1.2不可重复读2.1.3读脏数据 2.2并发调度的可串行性2.3并发与并行的区分2.4事务的隔离级别 3.封锁3…

36.Http协议的设计与解析

Http协议比Redis协议复杂的多,如果程序员自己去实现,工作量大。 Netty已经把Http协议的编解码器实现好了,只需要简单的配置就可以使用。 做一个http的服务端需要HttpServerCodec。 看它继承的父类: 结合了两个类: HttpRequestDecoder(入站处理器extends Channelnbound…

数据库的概念-数据库、数据库管理系统、数据库系统、数据库管理员、数据库设计人员、开发管理使用数据库系统的人员

一、数据库&#xff08;DB&#xff09; 1、数据库就是存储数据的仓库&#xff0c;只不过这个仓库是在计算机存储设备上 2、严格的说&#xff0c;数据库是长期存储在计算机内、有组织的、统一管理的、可共享的相关数据的集合 3、数据库应是为一个特定目标而设计、构建并装入数…

PriorityQueue详解(含动画演示)

目录 PriorityQueue详解1、PriorityQueue简介2、PriorityQueue继承体系3、PriorityQueue数据结构PriorityQueue类属性注释完全二叉树、大顶堆、小顶堆的概念☆PriorityQueue是如何利用数组存储小顶堆的&#xff1f;☆利用数组存储完全二叉树的好处&#xff1f; 4、PriorityQueu…

酒店宾馆民宿预订管理系统(ThinkPHP+uniapp+uView)

便捷高效&#xff0c;轻松管理你的住宿预订&#x1f3e8; 基于ThinkPHPuniappuView开发的多门店民宿酒店预订管理系统&#xff0c;快速部署属于自己民宿酒店的预订小程序&#xff0c;包含预订、退房、WIFI连接、吐槽、周边信息等功能。​​ 一、引言&#xff1a;为何需要民宿…

Spring Boot+vue社区养老系统(智慧养老平台)

使用技术&#xff1a; springbootvueMySQL 主要功能&#xff1a; 管理员 登录个人资料密码管理, 用户管理:床位类型管理,床位管理,护工管理,老人管理 咨询登记管理&#xff0c;预约登记管理,老人健康信 息管理,费用管理等功能.护工角色包含以下功能: 护工登录&#xff0c;个…

使用 GCD 实现属性的多读单写

使用 Grand Central Dispatch (GCD) 实现多读单写的属性 首先需要确保在多线程环境下的线程安全性。可以使用 GCD 提供的读写锁机制 dispatch_rwlock_t 或者 dispatch_queue_t 来实现这个功能。 Swift版本的实现 怎样创建一个并发队列 &#xff1f;// 使用 Swift 来实现的首…

UE5 中的碰撞问题

文章目录 一、初始准备二、重叠和碰撞三、自定义碰撞 一、初始准备 首先我们创建一个 BP_ThirdPerson 项目&#xff0c;然后在项目中创建两个 Actor 的蓝图 Blueprint 首先是一个移动的 BP_Push&#xff0c;这里使用 time line 循环旋转 cube 的相对位置 得到效果如下 然后是…

css如何动态累计数字?

导读&#xff1a;css如何动态累计数字&#xff1f;用于章节目录的序列数生成&#xff0c;用css的计数器实现起来比 js方式更简单&#xff01; 伪元素 ::after ::before伪元素设置content 可以在元素的首部和尾部添加内容&#xff0c;我们要在元素的首部添加序列号&#xff0c…

关于read,write,open时出现的文本文件和二进制文件读写的问题(怎么写入怎么读)

1、发现问题 使用read读取文本文件&#xff0c;一般采用字符空间作为缓存&#xff0c;最后输出&#xff1b; 使用read读取二进制文件&#xff0c;这里采用整数读取的展示&#xff1a; 首先创建文本文件&#xff0c;用write写入i的值到文件中&#xff1b; 再通过lseek改变读写一…

Day9 —— 大数据技术之ZooKeeper

ZooKeeper快速入门系列 ZooKeeper的概述什么是ZooKeeper&#xff1f;ZooKeeper的特点和功能使用ZooKeeper的原因 ZooKeeper数据模型ZooKeeper安装ZooKeeper配置ZooKeeper命令行操作常见服务端命令 ZooKeeper的概述 什么是ZooKeeper&#xff1f; ZooKeeper是一个开源的分布式协…

FFmpeg编译4

CPUx86-64 TOOLCHAIN N D K / t o o l c h a i n s / x 8 6 6 4 − 4.9 / p r e b u i l t / l i n u x − x 8 6 6 4 S Y S R O O T NDK/toolchains/x86_64-4.9/prebuilt/linux-x86_64 SYSROOT NDK/toolchains/x866​4−4.9/prebuilt/linux−x866​4SYSROOTNDK/platforms/and…

PBR网络数据流量分流+NQA联动静态路由

一、实验目的&#xff1a; 企业有两个网段&#xff0c;业务1网段和业务2网段&#xff0c;拓扑图如下&#xff0c; 二、实验要求 pc1报文走左侧链路到达ar1&#xff0c;pc2报文走右侧链路到达ar1&#xff0c;且当ar2或者ar3发生故障时候&#xff0c;可以通过另一个设备到达ar1…

HCIA 19 结束 企业总部-分支综合实验(下)

3.6出口NAT配置可以访问互联网 配置NAT使内网可以访问公网8.8.8.8&#xff0c;当前总部PC1 PING不通公网地址8.8.8.8。 3.6.1总部配置NAT访问互联网 步骤1&#xff1a;配置NAT acl number 2000 rule 5 permit source 192.168.0.0 0.0.255.255 # interface GigabitEthern…

头条系统-05-延迟队列精准发布文章-概述添加任务(db和redis实现延迟任务)、取消拉取任务定时刷新(redis管道、分布式锁setNx)

文章目录 延迟任务精准发布文章1)文章定时发布2)延迟任务概述2.1)什么是延迟任务2.2)技术对比2.2.1)DelayQueue2.2.2)RabbitMQ实现延迟任务2.2.3)redis实现 3)redis实现延迟任务4)延迟任务服务实现4.1)搭建heima-leadnews-schedule模块4.2)数据库准备4.3)安装redis4.4)项目集成…