K8S - 理解ClusterIP - 集群内部service之间的反向代理和loadbalancer

在Micro Service的治理中。

有两个很重要的点,

  1. 集群外部的用户/service 如何访问集群内的 入口服务(例如UI service)
  2. 集群内的service A 如何 访问 集群内的service B

为什么有上面的问题
无非是:

  1. 集群内的service 都是多实例的
  2. 每个service 实例都有单独不同的ip
  3. 如何负载均衡?

如图:
在这里插入图片描述





Spring Cloud 是如何就解决这两个问题的

集群外 to 集群内
  1. 用spring cloud gateway 来反向代理集群内的对外service, 例如图中的Service A, 如果其他Service 没有被配置在gateway中, 集群外部是无法直接访问的, 更加安全。 通常这个api gateway所在的server 具有双网卡, 1个ip在外网, 1个ip在集群内网

  2. 同是Spring Cloud Gateway 自带Load balancer 功能(基于 Spring cloud loadbalancer) , 所以即使要exposed 的service 有多个实例, Gateway同样可以根据指定规则 分发到不同的instance.

集群内 Service A to Service B
  1. 使用Eureke 作为注册中心, 每个service 的instance 都要往里面注册, 以给每个service 的多个instance 获得1个common的service Name作为DNS
  2. 使用Ribbon(继承在Eureka) 中, 作为load balancer 进行request转发

如图:
在这里插入图片描述





k8s 是如何就解决这两个问题的

K8S 的service 包括了很多种,
ingress, nodeport, clusterIp, externalName 都是属于service的

集群外 to 集群内
  1. 使用ingress or NodePort 来作为纵向流量代理, 而ingress 和 NodePort 都是自带load balancer 的。
    置于什么是纵向横向流量
    参考
    在这里插入图片描述

  2. 使用ClusterIP 作为 Service B之的反向代理, ClusterIP 的service自带loadbalancer 功能, 这样Service A就可以通过ClusterIP service的名字DNS 来访问Service B了

  3. 虽然k8s 没用Eureka, Nacos等注册中心, 但是实际上k8s 的service list 实际上就是1个注册中心了!

原理如图:
在这里插入图片描述





ClusterIP 的定义和简单介绍

  1. 集群内部通信:ClusterIP 为 Service 提供了一个虚拟的内部 IP 地址,用于在 Kubernetes 集群内的其他组件和服务之间进行通信。其他 Pod 可以通过该虚拟 IP 地址和 Service 的端口来访问该 Service。
  2. 内部负载均衡:ClusterIP 实现了基于轮询算法的负载均衡,它将请求均匀地分发给 Service 关联的后端 Pod。这意味着无论有多少个后端 Pod,它们都可以被平等地访问,从而实现负载均衡和高可用性。
    集群外部不可访问:ClusterIP 分配的 IP 地址只在 Kubernetes 集群内部可见,对集群外部不可访问。它不直接暴露给外部网络,因此不能直接从集群外部访问该 IP 地址。
  3. 适用于内部服务:ClusterIP 适用于内部服务,即那些只需要在 Kubernetes 集群内部可访问的服务。这些服务通常用于应用程序的内部组件之间的通信,例如数据库连接、队列服务等。
  4. 可用于其他类型的 Service:ClusterIP 可以作为其他类型的 Service(如 NodePort、LoadBalancer 或 Ingress)的后端服务。通过将其他类型的 Service 配置为使用 ClusterIP 类型的 Service,可以将请求转发到 ClusterIP 提供的虚拟 IP 地址上。

总的来说,ClusterIP 是 Kubernetes 集群内部的一种服务发现和负载均衡机制,用于实现集群内部的内部通信和服务访问。它提供了一个虚拟 IP 地址给 Service,并通过负载均衡算法将请求分发给关联的后端 Pod。ClusterIP 适用于内部服务,不直接对外部公开。





NodePort 和 ClusterIP 的具体例子

解下来我会用 NodePort 和 ClusterIP 来demo 以下 k8s service A 如何 访问 ServiceB
置于从集群外访问为何不用ingress, 是因为k8s 的博文系列还没提到Ingress.

大概框架
在这里插入图片描述

在这个例子中
我们会部署:
Service A: bq-api-service
Service B: cloud-user
nodePort service: nodeport-bq-api-service
clusterIP service: clusterip-cloud-user

置于这里两个service 具体是什么不重要, 可以认为它们是两个简单的springboot service 并没有集成任何spring cloud 的框架。





cleanup

当前k8s 环境是干净的

[gateman@manjaro-x13 bq-api-service]$ kubectl get all -o wide
NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE   SELECTOR
service/kubernetes   ClusterIP   10.96.0.1    <none>        443/TCP   77d   <none>





部署 Service B , cloud-user service



更新info 接口让其return hostname

先update /actuator/info 接口 让其可以return 当前service 所在server/container 的hostname

@Component
@Slf4j
public class AppVersionInfo implements InfoContributor {

    @Value("${pom.version}") // https://stackoverflow.com/questions/3697449/retrieve-version-from-maven-pom-xml-in-code
    private String appVersion;

    @Autowired
    private String hostname;

    @Value("${spring.datasource.url}")
    private String dbUrl;

    @Override
    public void contribute(Info.Builder builder) {
        log.info("AppVersionInfo: contribute ...");
        builder.withDetail("app", "Cloud User API")
                .withDetail("version", appVersion)
                .withDetail("hostname",hostname)
                .withDetail("dbUrl", dbUrl)
                .withDetail("description", "This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.");
    }
}

测试效果:

[gateman@manjaro-x13 bq-api-service]$ curl 127.0.0.1:8080/actuator/info
{"app":"Cloud User API","version":"0.0.1","hostname":"manjaro-x13","dbUrl":"jdbc:mysql://34.39.2.90:6033/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPublicKeyRetrieval=true","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP."}
[gateman@manjaro-x13 bq-api-service]$ 



利用cloudbuild 和 其trigger 让其自动部署docker image 到GAR (google artifact repository)

cloudbuild-gar.yaml

# just to update the docker image to GAR with the pom.xml version

steps:
  - id: run maven install
    name: maven:3.9.6-sapmachine-17 # https://hub.docker.com/_/maven
    entrypoint: bash
    args:
      - '-c'
      - |
        whoami
        set -x
        pwd
        mvn install
        cat pom.xml | grep -m 1 "<version>" | sed -e 's/.*<version>\([^<]*\)<\/version>.*/\1/' > /workspace/version.txt
        echo "Version: $(cat /workspace/version.txt)"


  - id: build and push docker image
    name: 'gcr.io/cloud-builders/docker'
    entrypoint: bash
    args:
      - '-c'
      - |
        set -x
        echo "Building docker image with tag: $(cat /workspace/version.txt)"
        docker build -t $_GAR_BASE/$PROJECT_ID/$_DOCKER_REPO_NAME/${_APP_NAME}:$(cat /workspace/version.txt) .
        docker push $_GAR_BASE/$PROJECT_ID/$_DOCKER_REPO_NAME/${_APP_NAME}:$(cat /workspace/version.txt)


logsBucket: gs://jason-hsbc_cloudbuild/logs/
options: # https://cloud.google.com/cloud-build/docs/build-config#options
  logging: GCS_ONLY # or CLOUD_LOGGING_ONLY https://cloud.google.com/cloud-build/docs/build-config#logging

substitutions:
  _DOCKER_REPO_NAME: my-docker-repo
  _APP_NAME: cloud-user
  _GAR_BASE: europe-west2-docker.pkg.dev

cloudbuild trigger:
terraform:

# referring https://registry.terraform.io/providers/hashicorp/google/latest/docs/resources/cloudbuild_trigger
resource "google_cloudbuild_trigger" "cloud-user-gar-trigger" {
  name = "cloud-user-gar-trigger" # could not contains underscore

  location = var.region_id

  # when use github then should use trigger_template
  github {
    name = "demo_cloud_user"
    owner = "nvd11"
    push {
      branch = "main"
      invert_regex = false # means trigger on branch
    }
  }


  filename = "cloudbuild-gar.yaml"
  # projects/jason-hsbc/serviceAccounts/terraform@jason-hsbc.iam.gserviceaccount.com
  service_account = data.google_service_account.cloudbuild_sa.id 
}

这样, 一但有任何commit 推送到github main branch
cloudbuild 就会自动打包docker image 到指定的 GAR 仓库
url:
europe-west2-docker.pkg.dev/jason-hsbc/my-docker-repo/cloud-user:xxx

其中xxx 是pom.xml 里定义的version 数字

有了这个image path,就方便了后面在k8s 部署



编写yaml 脚本

deployment-cloud-user.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  labels: # label of this deployment
    app: cloud-user # custom defined
    author: nvd11
  name: deployment-cloud-user # name of this deployment
  namespace: default
spec:
  replicas: 4            # desired replica count, Please note that the replica Pods in a Deployment are typically distributed across multiple nodes.
  revisionHistoryLimit: 10 # The number of old ReplicaSets to retain to allow rollback
  selector: # label of the Pod that the Deployment is managing,, it's mandatory, without it , we will get this error 
            # error: error validating data: ValidationError(Deployment.spec.selector): missing required field "matchLabels" in io.k8s.apimachinery.pkg.apis.meta.v1.LabelSelector ..
    matchLabels:
      app: cloud-user
  strategy: # Strategy of upodate
    type: RollingUpdate # RollingUpdate or Recreate
    rollingUpdate:
      maxSurge: 25% # The maximum number of Pods that can be created over the desired number of Pods during the update
      maxUnavailable: 25% # The maximum number of Pods that can be unavailable during the update
  template: # Pod template
    metadata:
      labels:
        app: cloud-user # label of the Pod that the Deployment is managing. must match the selector, otherwise, will get the error Invalid value: map[string]string{"app":"bq-api-xxx"}: `selector` does not match template `labels`
    spec:
      containers:
      - image: europe-west2-docker.pkg.dev/jason-hsbc/my-docker-repo/cloud-user:1.0.1 # image of the container
        imagePullPolicy: IfNotPresent
        name: container-cloud-user
        env: # set env varaibles
        - name: APP_ENVIRONMENT
          value: prod
      restartPolicy: Always # Restart policy for all containers within the Pod
      terminationGracePeriodSeconds: 10 # The period of time in seconds given to the Pod to terminate gracefully



部署yaml
[gateman@manjaro-x13 cloud-user]$ kubectl apply -f deployment-cloud-user.yaml 
deployment.apps/deployment-cloud-user created
[gateman@manjaro-x13 cloud-user]$ kubectl get pods -o wide
NAME                                     READY   STATUS    RESTARTS   AGE    IP             NODE        NOMINATED NODE   READINESS GATES
deployment-cloud-user-65fb8d79fd-28vmn   1/1     Running   0          104s   10.244.2.133   k8s-node0   <none>           <none>
deployment-cloud-user-65fb8d79fd-9rjln   1/1     Running   0          104s   10.244.2.134   k8s-node0   <none>           <none>
deployment-cloud-user-65fb8d79fd-m8xv4   1/1     Running   0          104s   10.244.1.67    k8s-node1   <none>           <none>
deployment-cloud-user-65fb8d79fd-ndvjb   1/1     Running   0          104s   10.244.3.76    k8s-node3   <none>           <none>

可以见到 4个pods 跑起来了



初步测试

cloud-user 是部署好了, 但是它没有配置nodeport 和 clusterIP 等任何service, 所以它是无法被nodes 的service 访问的。

上面的pods信息里显示了 ip address, 但那些ip address 是容器level, 只能被另1个容器访问。

这样的话, 我们可以进入1个新建的容器内测试:

新建dns-test 测试pod
[gateman@manjaro-x13 cloud-user]$ kubectl run dns-test --image=odise/busybox-curl --restart=Never -- /bin/sh -c "while true; do echo hello docker; sleep 1; done"
pod/dns-test created

这样dns-test pod 就创建成功了, 之所以要加上一段 while死循环是避免这个pod 自动complete退出

进入测试容器
[gateman@manjaro-x13 cloud-user]$ kubectl get pods -o wide
NAME                                     READY   STATUS    RESTARTS   AGE   IP             NODE        NOMINATED NODE   READINESS GATES
deployment-cloud-user-65fb8d79fd-28vmn   1/1     Running   0          15m   10.244.2.133   k8s-node0   <none>           <none>
deployment-cloud-user-65fb8d79fd-9rjln   1/1     Running   0          15m   10.244.2.134   k8s-node0   <none>           <none>
deployment-cloud-user-65fb8d79fd-m8xv4   1/1     Running   0          15m   10.244.1.67    k8s-node1   <none>           <none>
deployment-cloud-user-65fb8d79fd-ndvjb   1/1     Running   0          15m   10.244.3.76    k8s-node3   <none>           <none>
dns-test                                 1/1     Running   0          6s    10.244.2.135   k8s-node0   <none>           <none>

[gateman@manjaro-x13 cloud-user]$ kubectl exec -it dns-test -- /bin/sh
/ #

十分简单

在容器内调用各个pod的api
/ # curl 10.244.2.133:8080/actuator/info
{"app":"Cloud User API","version":"1.0.1","hostname":"deployment-cloud-user-65fb8d79fd-28vmn","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPublicKeyRetrieval=true","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP."}/ # 
/ # 
/ # curl 10.244.2.134:8080/actuator/info
{"app":"Cloud User API","version":"1.0.1","hostname":"deployment-cloud-user-65fb8d79fd-9rjln","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPublicKeyRetrieval=true","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP."}/ # 
/ # 
/ # 
/ # curl 10.244.1.67:8080/actuator/info
{"app":"Cloud User API","version":"1.0.1","hostname":"deployment-cloud-user-65fb8d79fd-m8xv4","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPublicKeyRetrieval=true","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP."}/ # 
/ # 
/ # curl 10.244.3.76:8080/actuator/info
{"app":"Cloud User API","version":"1.0.1","hostname":"deployment-cloud-user-65fb8d79fd-ndvjb","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPublicKeyRetrieval=true","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP."}/ # 
/ # 
/ # 

可以见到4个pod的 service 都可以被dns-test 容器内call 通, 能分别return 它们的hostname, 但是调用时要指定ip , 无法做到统一入口 和 load balance





部署 ClusterIP - clusterip-cloud-user

编写yaml

clusterip-cloud-user.yaml

apiVersion: v1
kind: Service
metadata:
  name: clusterip-cloud-user
spec:
  selector:
    app: cloud-user # for the pods that have the label app: cloud-user
  ports:
    - protocol: TCP
      port: 8080
      targetPort: 8080
  type: ClusterIP

由于加上了selector , 所以endpoint 也会自动创建

部署yaml
[gateman@manjaro-x13 cloud-user]$ kubectl create -f clusterip-cloud-user.yaml 
service/clusterip-cloud-user created

检查一下:

[gateman@manjaro-x13 cloud-user]$ kubectl get svc -o wide
NAME                   TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)    AGE   SELECTOR
clusterip-cloud-user   ClusterIP   10.96.11.18   <none>        8080/TCP   29s   app=cloud-user
kubernetes             ClusterIP   10.96.0.1     <none>        443/TCP    77d   <none>
[gateman@manjaro-x13 cloud-user]$ kubectl get ep -o wide
NAME                   ENDPOINTS                                                          AGE
clusterip-cloud-user   10.244.1.67:8080,10.244.2.133:8080,10.244.2.134:8080 + 1 more...   2m36s
kubernetes             192.168.0.3:6443                                                   77d

可以见到1个cluster ip service 已被创建

名字是 clusterip-cloud-user, 类型是ClusterIP, Cluster-IP 就是所谓的虚拟ip

在endpoints 里面, 可以见到这个clusterip service 代理的是 4个 ip和端口的组合, 它们实际上就是 cloud-user 的4个pods

初步测试

ClusterIP 和 NodePort 不一样, 是无法从容器外部直接访问的,
所以我们还是需要进入测试容器类测试

kubectl exec -it dns-test -- /bin/sh

之后我们可以用 $serviceName:$\port 去访问endpoints里的service了

/ # nslookup clusterip-cloud-user
Server:    10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name:      clusterip-cloud-user
Address 1: 10.96.11.18 clusterip-cloud-user.default.svc.cluster.local

`
/ # ping clusterip-cloud-user

PING clusterip-cloud-user (10.96.11.18): 56 data bytes
^C
--- clusterip-cloud-user ping statistics ---
10 packets transmitted, 0 packets received, 100% packet loss
/ # curl clusterip-cloud-user:8080/actuator/info
{"app":"Cloud User API","version":"1.0.1","hostname":"deployment-cloud-user-65fb8d79fd-m8xv4","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPub/ # curl clusterip-cloud-user:8080/actuator/info
{"app":"Cloud User API","version":"1.0.1","hostname":"deployment-cloud-user-65fb8d79fd-28vmn","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPub/ # curl clusterip-cloud-user:8080/actuator/info
{"app":"Cloud User API","version":"1.0.1","hostname":"deployment-cloud-user-65fb8d79fd-9rjln","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPub/ # curl clusterip-cloud-user:8080/actuator/info
{"app":"Cloud User API","version":"1.0.1","hostname":"deployment-cloud-user-65fb8d79fd-9rjln","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPublicKeyRetrieval=true","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP."}

虽然ping 是无法ping 通的, 可能没开通ICMP 协议

但是我们的确可以通过 clusterip的service 去访问 cloud-user 的4个instance , 而且是随机分配的, 时间了load balance的功能!





部署 Service A - bq-api-service

修改配置

部署之前, 我们在 bq-api-service 先增加1个接口 /ext-service/user-service/info
在这个接口内, 会调用 cloud-user 的 /actuator/info 接口

方便测试

Controller

    @Autowired
    private UserService userService;

    @GetMapping("/user-service/info")
    public ResponseEntity<ApiResponse<ServiceInfoDao>> userServiceInfo() {
        ServiceInfoDao userServiceInfo = null;
        try {
            userServiceInfo = this.userService.getServiceInfo();
            ApiResponse<ServiceInfoDao> response = new ApiResponse<>();
            response.setData(userServiceInfo);
            response.setReturnCode(0);
            response.setReturnMsg("user service is running in the host: " + userServiceInfo.getHostname());
            return ResponseEntity.ok(response);
        } catch (Exception e) {
            log.error("Error in getUserById...", e);
            ApiResponse<ServiceInfoDao> response = new ApiResponse<>();
            response.setReturnCode(-1);
            response.setReturnMsg("Error in getting user service info: " + e.getMessage());
            return ResponseEntity.status(500).body(response);
        }
    }

Service

    @Override
    public ServiceInfoDao getServiceInfo() {
        log.info("getServiceInfo()...");
        return userClient.getServiceInfo();
    }

feignclient:

@FeignClient(name = "demo-cloud-user", url="${hostIp.cloud-user}")
public interface UserClient {

    @GetMapping("/actuator/info")
    ServiceInfoDao getServiceInfo();
}

在feign client里见到 ip address 是配置在配置文件中的。
正好, 我们增加1个新的application-k8s 配置文件
application-k8s.yaml

## 其他配置

hostIp:
  cloud-user: clusterip-cloud-user:8080

关键我们不需要再指定 cloud-user 部署在哪里的ip了, 也不用关心它有多少instance, 跟spring cloud 用法很类似, 只需要提供1个名字

在spring cloud 中我们需要提供cloud-user 在eureka注册的名字
在k8s 我们需要提供用于反向代理的 clusterIP service 的名字

部署docker image 上GAR

同样的方法
url: europe-west2-docker.pkg.dev/jason-hsbc/my-docker-repo/bq-api-service:xxx

编写yaml

deployment-bq-api-service.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  labels: # label of this deployment
    app: bq-api-service # custom defined
    author: Jason
  name: deployment-bq-api-service # name of this deployment
  namespace: default
spec:
  replicas: 4            # desired replica count, Please note that the replica Pods in a Deployment are typically distributed across multiple nodes.
  revisionHistoryLimit: 10 # The number of old ReplicaSets to retain to allow rollback
  selector: # label of the Pod that the Deployment is managing,, it's mandatory, without it , we will get this error 
            # error: error validating data: ValidationError(Deployment.spec.selector): missing required field "matchLabels" in io.k8s.apimachinery.pkg.apis.meta.v1.LabelSelector ..
    matchLabels:
      app: bq-api-service
  strategy: # Strategy of upodate
    type: RollingUpdate # RollingUpdate or Recreate
    rollingUpdate:
      maxSurge: 25% # The maximum number of Pods that can be created over the desired number of Pods during the update
      maxUnavailable: 25% # The maximum number of Pods that can be unavailable during the update
  template: # Pod template
    metadata:
      labels:
        app: bq-api-service # label of the Pod that the Deployment is managing. must match the selector, otherwise, will get the error Invalid value: map[string]string{"app":"bq-api-xxx"}: `selector` does not match template `labels`
    spec:
      containers:
      - image: europe-west2-docker.pkg.dev/jason-hsbc/my-docker-repo/bq-api-service:1.2.1 # image of the container
        imagePullPolicy: IfNotPresent
        name: container-bq-api-service
        env: # set env varaibles
        - name: APP_ENVIRONMENT
          value: k8s
      restartPolicy: Always # Restart policy for all containers within the Pod
      terminationGracePeriodSeconds: 10 # The period of time in seconds given to the Pod to terminate gracefully

同样4个实例, 注意的是环境变量要正确地 配置成 k8s`

        env: # set env varaibles
        - name: APP_ENVIRONMENT
          value: k8s



部署yaml
deployment.apps/deployment-bq-api-service created
[gateman@manjaro-x13 bq-api-service]$ kubectl get po -o wide
NAME                                        READY   STATUS    RESTARTS   AGE    IP             NODE        NOMINATED NODE   READINESS GATES
deployment-bq-api-service-778cf8f54-677vl   1/1     Running   0          34s    10.244.2.136   k8s-node0   <none>           <none>
deployment-bq-api-service-778cf8f54-nfzhg   1/1     Running   0          34s    10.244.3.77    k8s-node3   <none>           <none>
deployment-bq-api-service-778cf8f54-q9lfx   1/1     Running   0          34s    10.244.1.68    k8s-node1   <none>           <none>
deployment-bq-api-service-778cf8f54-z72dr   1/1     Running   0          34s    10.244.3.78    k8s-node3   <none>           <none>
deployment-cloud-user-65fb8d79fd-28vmn      1/1     Running   0          121m   10.244.2.133   k8s-node0   <none>           <none>
deployment-cloud-user-65fb8d79fd-9rjln      1/1     Running   0          121m   10.244.2.134   k8s-node0   <none>           <none>
deployment-cloud-user-65fb8d79fd-m8xv4      1/1     Running   0          121m   10.244.1.67    k8s-node1   <none>           <none>
deployment-cloud-user-65fb8d79fd-ndvjb      1/1     Running   0          121m   10.244.3.76    k8s-node3   <none>           <none>
dns-test                                    1/1     Running   0          105m   10.244.2.135   k8s-node0   <none>           <none>

可以见到 4个 bq-api-service 的pods 也起来了



初步测试

因为没有nodeport , 我们还是需要进入测试容器

kubectl exec -it dns-test -- /bin/sh

还是单独地测试1个instance, 先记住2个ip 10.244.2.136, 10.244.3.77

先测试该service 的info

/ # curl 10.244.2.136:8080/actuator/info
{"app":"Sales API","version":"1.2.1","hostname":"deployment-bq-api-service-778cf8f54-677vl","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP."}

可以见到是已经启动了

然后在测试它的 /ext-service/user-service/info 接口

/ # curl 10.244.3.77:8080/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-m8xv4","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-m8xv4","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowP/ # curl 10.244.3.77:8080/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-m8xv4","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-m8xv4","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowP/ # curl 10.244.3.77:8080/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-m8xv4","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-m8xv4","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowP/ # curl 10.244.3.77:8080/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-m8xv4","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-m8xv4","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowP/ # curl 10.244.2.136:8080/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-28vmn","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-28vmn","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowP/ # curl 10.244.2.136:8080/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-28vmn","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-28vmn","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowP/ # curl 10.244.2.136:8080/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-28vmn","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-28vmn","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowP/ # curl 10.244.2.136:8080/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-28vmn","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-28vmn","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPublicKeyRetrieval=true"}}/ # 

可见bq-api-service 已经成功 通过 cluster ip 去访问 后面的cloud-user service 了, 根据返回的host name

可以看出
clusterip 的loadbalancer 不会无脑随机转发

从 10.244.3.77 访问的bq-api-service 会访问 deployment-cloud-user-65fb8d79fd-m8xv4 里的cloud-user
从 10.244.2.136 访问的就会访问 deployment-cloud-user-65fb8d79fd-28vmn

为什么? 因为clusterip 会智能地优先访问 同1个node的后台服务!

到这了这一步, 我们已经成功demo了 ClusterIP 的主要功能了
service A 已经能通过 cluster ip 访问service B 只是差了NodePort 无法从集群外测试
在这里插入图片描述





部署 NodePort nodeport-bq-api-service

注意这个nodeport 是for service A(bq-api-service)的而不是 service B, 如上图

编写yaml

nodeport-bq-api-service.yaml

apiVersion: v1 #  api version can be v1 or apps/v1
kind: Service 
metadata:
  name: nodeport-bq-api-service # name of the service
  labels:
    app: bq-api-service # label of the service itself
spec:
  selector: # Label of the Pod that the Service is selecting ,  all the pods not matter the pods are belong to which deployment, as long as the pods have the label app: bq-api-service
    app: bq-api-service # if the pod do not have the label app: bq-api-service, the pod could not be selected by the service
  ports:
  - port: 8080 # port of the service itself. we could also use serviceip:port to access the pod service, 
                 # but we use the nodeip:nodePort to access the service it. this nodePort is generated by k8s ramdomly
    targetPort: 8080 # port of the Pod
    name: 8080-port # name of the port
  type: NodePort # type of the service, NodePort, ClusterIP, LoadBalancer
                 # Ramdomly start a port (30000-32767) on each node, and forward the request to the service port (32111) on the pod
                 # and it could also be use to expose the service to the external world, but it's not recommended for production, because it's not secure and low efficient
部署yaml
[gateman@manjaro-x13 bq-api-service]$ kubectl create -f nodeport-bq-api-service.yaml 
service/nodeport-bq-api-service created
[gateman@manjaro-x13 bq-api-service]$ kubectl get svc -o wide
NAME                      TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE   SELECTOR
clusterip-cloud-user      ClusterIP   10.96.11.18     <none>        8080/TCP         86m   app=cloud-user
kubernetes                ClusterIP   10.96.0.1       <none>        443/TCP          77d   <none>
nodeport-bq-api-service   NodePort    10.106.59.100   <none>        8080:32722/TCP   13s   app=bq-api-service
[gateman@manjaro-x13 bq-api-service]$ kubectl get ep -o wide
NAME                      ENDPOINTS                                                          AGE
clusterip-cloud-user      10.244.1.67:8080,10.244.2.133:8080,10.244.2.134:8080 + 1 more...   86m
kubernetes                192.168.0.3:6443                                                   77d
nodeport-bq-api-service   10.244.1.68:8080,10.244.2.136:8080,10.244.3.77:8080 + 1 more...    19s

从nodeport service 的信息得出, 1个随机端口 32722 生成用于外部访问

E2E 测试

既然所有components 都部署了, 现在我们可以直接从集群外部测试
34.142.xxxxxx 是k8s-master 的公网ip

[gateman@manjaro-x13 bq-api-service]$ curl 34.142.xxxxxx:32722/actuator/info
{"app":"Sales API","version":"1.2.1","hostname":"deployment-bq-api-service-778cf8f54-z72dr","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP."}[gateman@manjaro-x13 bq-api-service]$ curl 34.142.35.168:32722/ext-service/user-service/info
{"returnCode":0,"returnMsg":"user service is running in the host: deployment-cloud-user-65fb8d79fd-9rjln","data":{"app":"Cloud User API","version":"1.0.1","description":"This is a simple Spring Boot application to demonstrate the use of BigQuery in GCP.","hostname":"deployment-cloud-user-65fb8d79fd-9rjln","dbUrl":"jdbc:mysql://192.168.0.42:3306/demo_cloud_user?useUnicode=true&characterEncoding=utf-8&useSSL=false&allowPublicKeyRetrieval=true"}}[gateman@manjaro-x13 bq-api-service]$ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/736725.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

聚焦AIoT最后一公里:EasyCVR+AI视频技术在各领域的创新应用

随着5G、AI、边缘计算、物联网&#xff08;IoT&#xff09;、云计算等技术的快速发展&#xff0c;万物互联已经从概念逐渐转变为现实&#xff0c;全新的行业生态AIoT正在开启新时代。巨大的市场潜力与AI等新兴技术不断融合形成的庞大市场缺口&#xff0c;深度场景化应用落地诉求…

C语言 | Leetcode C语言题解之第179题最大数

题目&#xff1a; 题解&#xff1a; long cmp(int *x, int *y) {unsigned long sx 10, sy 10;while (sx < *x) {sx * 10;}while (sy < *y) {sy * 10;}return sx * (*y) (*x) - sy * (*x) - (*y); }char *largestNumber(int *nums, int numsSize) {qsort(nums, numsSi…

定时器-前端使用定时器3s轮询状态接口,2min为接口超时

背景 众所周知&#xff0c;后端是处理不了复杂的任务的&#xff0c;所以经过人家的技术讨论之后&#xff0c;把业务放在前端来实现。记录一下这次的离大谱需求吧。 如图所示&#xff0c;这个页面有5个列表&#xff0c;默认加载计划列表。但是由于后端的种种原因&#xff0c;这…

程序人生:关于RHCE红帽认证这件事

花了两个月备考红帽&#xff0c;最终终于双满分通过。 关于考试 RHCE红帽认证总共需要考两门&#xff1a;RHCSA、RHCE。 RHCSA主要是考察基本的Linux操作&#xff1a;用户、权限、空间扩容、yum、容器等内容。 RHCE主要是考察ansible playbook 代码的开发。 通过考试没有别…

【牛客深信服总结】

1.反转链表 2.协议 交换机路由器 3.手写代码&#xff0c;一个二叉树&#xff0c;从根节点到叶子结点算一条路径&#xff0c;打印出所有路径。 4.一些数据结构相关的问题&#xff0c;包括栈和队列的应用&#xff0c;链表和数组的区别&#xff0c;最大堆和最小堆&#xff0c;动态…

flex布局无法设置图片icon和文本垂直居中对齐问题

项目场景&#xff1a; 需要实现下面的效果&#xff0c;即图标和文字垂直对齐。 问题描述 直接使用flex布局并设置垂直居中&#xff0c;发现并没有垂直对齐&#xff0c;图片明显偏上。 .wrapper {display: flex;align-items: center; }.view-icon {height: 28px;width: 28px;m…

算是一些Transformer学习当中的重点内容

一、基础概念 Transformer是一种神经网络结构&#xff0c;由Vaswani等人在2017年的论文Attentions All YouNeed”中提出&#xff0c;用于处理机器翻译、语言建模和文本生成等自然语言处理任务。Transformer同样是encoder-decoder的结构&#xff0c;只不过这里的“encoder”和“…

OpenGL:中点直线算法

理论部分 中点直线算法是通过在像素中确定与理想直线最靠近的像素来进行扫描转换的。 在上图中,假设直线的斜率 0 ≤ m ≤ 1 0\le m \le 1 0≤m≤1。假设当前最近的像素已经确认为 P ( x k , y k ) P(x_k, y_k) P(xk​,yk​),由于 x x x位最大的位移方向,因此直线在 x x x方…

力扣SQL50 求关注者的数量 分组计数

Problem: 1729. 求关注者的数量 Code select user_id, count(1) followers_count from Followers group by user_id order by user_id;

基于STM32的智能农业灌溉系统

目录 引言环境准备智能农业灌溉系统基础代码实现&#xff1a;实现智能农业灌溉系统 4.1 数据采集模块4.2 数据处理与分析4.3 控制系统实现4.4 用户界面与数据可视化应用场景&#xff1a;智能农业管理与优化问题解决方案与优化收尾与总结 1. 引言 智能农业灌溉系统通过使用ST…

IDEA各种实体类运行爆红,不运行就没事

1.问题描述 如图所示&#xff0c;后端项目的import的各种entity爆红&#xff0c;点击也有导入包的提示&#xff0c;且这种报红几乎遍布了整个工程项目 2.我的解决方案 清空缓存&#xff0c;然后把target文件删掉&#xff0c;重新跑 3.小结 idea项目有时候就是一个核弹&…

【windows解压】解压文件名乱码

windows解压&#xff0c;文件名乱码但内容正常。 我也不知道什么时候设置出的问题。。。换了解压工具也没用&#xff0c;后来是这样解决的。 目录 1.环境和工具 2.打开【控制面板】 3.点击【时钟和区域】 4.选择【区域】 5.【管理】中【更改系统区域设置】 6.选择并确定…

推荐系统三十六式学习笔记:原理篇.矩阵分解12|如果关注排序效果,那么这个模型可以帮到你

目录 矩阵分解的不足贝叶斯个性化排序AUC构造样本目标函数训练方法 总结 矩阵分解在推荐系统中的地位非常崇高。它既有协同过滤的血统&#xff0c;又有机器学习的基因&#xff0c;可以说是非常优秀了&#xff1b;但即便如此&#xff0c;传统的矩阵分解无论是在处理显式反馈&…

分类接口开发

文章目录 1.查询所有一级分类1.sun-club-application-controller 控制层1.SubjectCategoryController.java 定义基础的queryPrimaryCategory&#xff0c;调用领域层 2.sun-club-domain 领域层1.SubjectCategoryDomainService.java2.SubjectCategoryConverter.java3.SubjectCate…

每日一题——Python代码实现力扣1. 两数之和(举一反三+思想解读+逐步优化)五千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 菜鸡写法 代码分析 时间复杂度分析 空间复杂度分析 改进建议 我要更强 方法1: 使…

英伟达下一代DLSS或利用人工智能

英伟达的黄仁勋在2024年Computex展会上的问答环节中&#xff0c;提前透露了公司未来几代深度学习超采样&#xff08;DLSS&#xff09;技术的发展方向。在回答有关DLSS的问题时&#xff0c;黄仁勋表示&#xff0c;未来我们将看到通过纯粹的人工智能生成的纹理和对象。他还提到&a…

体验了一下AI生产3D模型有感

我的实验路子是想试试能不能帮我建一下实物模型 SO 我选择了一个成都环球中心的网图 但是生成的结果掺不忍睹&#xff0c;但是看demo来看&#xff0c;似乎如果你能给出一张干净的提示图片&#xff0c;他还是能做出一些东西的 这里我延申的思考是这个物体他如果没看过背面&…

AI 大模型企业应用实战(13)-Lostinthemiddle长上下文精度处理

1 长文本切分信息丢失处理方案 10检索时性能大幅下降相关信息在头尾性能最高检索 ->> 排序 ->使用 实战 安装依赖&#xff1a; ! pip install sentence-transformers 演示如何使用 Langchain 库中的组件来处理长文本和检索相关信息。 导入所需的库使用指定的预训…

Posix多线程编程总结

Posix在线文档&#xff1a; The Single UNIX Specification, Version 2 (opengroup.org) 本文主要参考这位大神的文章&#xff1a; Posix多线程编程学习笔记 - 凌峰布衣 - 博客园 (cnblogs.com) 线程安全问题 多线程编程中&#xff0c;经常遇到的就是线程安全问题&#xff0c;或…

图片覆盖攻击

点击劫持的本质是一种视觉欺骗。顺着这个思路&#xff0c;还有一些攻击方法也可以起到类似的作 用&#xff0c;比如图片覆盖。 一名叫 sven.vetsch 的安全研究者最先提出了这种 Cross Site Image Overlaying 攻击&#xff0c;简称 XSIO。sven.vetsch 通过调整图片的 style 使得…