Redis复制

在Redis中,用户可以通过执行SLAVEOF命令或者设置slaveof选项,让一个服务器去复制(replicate) 另一个服务器,我们称呼被复制的服务器为主服务器(master),而对主服务器进行复制的服务器则被称为从服务器(slave),如下图所示。

 

1复制功能的实现

为了解决旧版复制功能在处理断线重复制情况时的低效问题,Redis从2.8版本开始,使用PSYNC命令代替SYNC命令来执行复制时的同步操作。

PSYNC命令具有完整重同步(full resynchronization) 和部分重同步(partial resynchronization)两种模式:

其中完整重同步用于处理初次复制情况:完整重同步的执行步骤和SYNC命令的执行步骤基本一样,它们都是通过让主服务器创建并发送RDB文件,以及向从服务器发送保存在缓冲区里面的写命令来进行同步。

而部分重同步则用于处理断线后重复制情况:当从服务器在断线后重新连接主服务器时,如果条件允许,主服务器可以将主从服务器连接断开期间执行的写命令发送给从服务器,从服务器只要接收并执行这些写命令,就可以将数据库更新至主服务器当前所处的状态。

PSYNC命令的部分重同步模式解决了旧版复制功能在处理断线后重复制时出现的低效情况。

SYNC命令和PSYNC命令都可以让断线的主从服务器重新回到一致状态,但执行部分重同步所需的资源比起执行SYNC命令所需的资源要少得多,完成同步的速度也快得多。执行SYNC命令需要生成、传送和载入整个RDB文件,而部分重同步只需要将从服务器缺少的写命令发送给从服务器执行就可以了。

下图展示了主从服务器在执行部分重同步时的通信过程。

 

2部分重同步的实现

在了解了PSYNC命令的由来,以及部分重同步的工作方式之后,是时候来介绍一下部分重同步的实现细节了。

部分重同步功能由以下三个部分构成:

主服务器的复制偏移量(replication offset)和从服务器的复制偏移量。

主服务器的复制积压缓冲区(replication backlog)。

服务器的运行ID (runID)。

以下三个小节将分别介绍这三个部分。

2.1复制偏移量

执行复制的双方——主服务器和从服务器会分别维护一个复制偏移量:

主服务器每次向从服务器传播N个字节的数据时,就将自己的复制偏移量的值加上N。

从服务器每次收到主服务器传播来的N个字节的数据时,就将自己的复制偏移量的值加上N。

在下图所示的例子中,主从服务器的复制偏移量的值都为10086。

 

如果这时主服务器向三个从服务器传播长度为33字节的数据,那么主服务器的复制偏移量将更新为10086+33=10119,而三个从服务器在接收到主服务器传播的数据之后,也会将复制偏移量更新为10119,如下图所示。

通过对比主从服务器的复制偏移量,程序可以很容易地知道主从服务器是否处于一致状态:

如果主从服务器处于一致状态,那么主从服务器两者的偏移量总是相同的。

相反,如果主从服务器两者的偏移量并不相同,那么说明主从服务器并未处于一致状态。

考虑以下这个例子:假设主从服务器当前的复制偏移量都为10086,但是就在主服务器要向从服务器传播长度为33字节的数据之前,从服务器A断线了,那么主服务器传播的数据将只有从服务器B和从服务器C能收到,在这之后,主服务器、从服务器B和从服务器C三个服务器的复制偏移量都将更新为10119,而断线的从服务器A的复制偏移量仍然停留在10086,这说明从服务器A与主服务器并不一致,如下图所示。.

 

假设从服务器A在断线之后就立即重新连接主服务器,并且成功,那么接下来,从服务器将向主服务器发送PSYNC命令,报告从服务器A当前的复制偏移量为10086,那么这时,主服务器应该对从服务器执行完整重同步还是部分重同步呢?如果执行部分重同步的话,主服务器又如何补偿从服务器A在断线期间丢失的那部分数据呢?以上问题的答案都和复制积压缓冲区有关。

2.2复制积压缓冲区

复制积压缓冲区是由主服务器维护的一个固定长度(fixed-size)先进先出(FIFO)队列,默认大小为1MB。

固定长度先进先出队列

固定长度先进先出队列的入队和出队规则跟普通的先进先出队列一样:新元素从一边进入队列,而旧元素从另一边弹出队列。

和普通先进先出队列随着元素的增加和减少而动态调整长度不同,固定长度先进先出队列的长度是固定的,当入队元素的数量大于队列长度时,最先入队的元素会被弹出,而新元素会被放入队列。

举个例子,如果我们要将 ’h’、'e'、’l’、’l’、'o'五个字符放进一个长度为3的固定长度先进先出队列里面,那么’h’、'e'、’l’ 三个字符将首先被放入队列:

[’h’、'e'、’ l ’]

但是当后一个1字符要进入队列时,队首的’h'字符将被弹出,队列变成:

['e'、’ l ’、’ l ’]

接着,'o’的入队会引起'e'的出队,队列变成:

['l’、 ‘ l '、'o']

以上就是固定长度先进先出队列的运作方式。

当主服务器进行命令传播时,它不仅会将写命令发送给所有从服务器,还会将写命令入队到复制积压缓冲区里面,如下图所示。

因此,主服务器的复制积压缓冲区里面会保存着一部分最近传播的写命令,并且复制积压缓冲区会为队列中的每个字节记录相应的复制偏移量。

当从服务器重新连上主服务器时,从服务器会通过PSYNC命令将自己的复制偏移量offset发送给主服务器,主服务器会根据这个复制偏移量来决定对从服务器执行何种同步操作:

如果offset偏移量之后的数据(也即是偏移量offset+1开始的数据)仍然存在于复制积压缓冲区里面,那么主服务器将对从服务器执行部分重同步操作。

相反,如果offset偏移量之后的数据已经不存在于复制积压缓冲区,那么主服务器将对从服务器执行完整重同步操作。

回到先前举的例子:

当从服务器A断线之后,它立即重新连接主服务器,并向主服务器发送PSYNC命令,报告自己的复制偏移量为10086。

主服务器收到从服务器发来的PSYNC命令以及偏移量10086之后,主服务器将检查偏移量10086之后的数据是否存在于复制积压缓冲区里面,结果发现这些数据仍然存在,于是主服务器向从服务器发送+CONTINUE回复,表示数据同步将以部分重同步模式来进行。

接着主服务器会将复制积压缓冲区10086偏移量之后的所有数据(偏移量为10087至10119)都发送给从服务器。

从服务器只要接收这33字节的缺失数据,就可以回到与主服务器一致的状态,如下图所示。

根据需要调整复制积压缓冲区的大小:

Redis为复制积压缓冲区设置的默认大小为1MB,如果主服务器需要执行大量写命令,又或者主从服务器断线后重连接所需的时间比较长,那么这个大小也许并不合适。如果复制积压缓冲区的大小设置得不恰当,那么PSYNC命令的复制重同步模式就不能正常发挥作用,因此,正确估算和设置复制积压缓冲区的大小非常重要。

复制积压缓冲区的最小大小可以根据公式second * write_size_per_second 来估算:

其中second为从服务器断线后重新连接上主服务器所需的平均时间(以秒计算)。

而write_size_per_second则是主服务器平均每秒产生的写命令数据量(协议格式的写命令的长度总和)。

例如,如果主服务器平均每秒产生1MB的写数据,而从服务器断线之后平均要5秒才能重新连接上主服务器,那么复制积压缓冲区的大小就不能低于5MB。

为了安全起见,可以将复制积压缓冲区的大小设为2 * second * write_size_per_second,这样可以保证绝大部分断线情况都能用部分重同步来处理。

至于复制积压缓冲区大小的修改方法,可以参考配置文件中关于repl-backlog-size选项的说明。

2.3服务器运行ID

除了复制偏移量和复制积压缓冲区之外,实现部分重同步还需要用到服务器运行ID(run ID);

每个Redis服务器,不论主服务器还是从服务,都会有自已的运行ID。

运行ID在服务器启动时自动生成,由40个随机的十六进制字符组成,例如53b9b28df8042fdc9ab5e3fcbbbabff1d5dce2b3。

当从服务器对主服务器进行初次复制时,主服务器会将自己的运行ID传送给从服务器,而从服务器则会将这个运行ID保存起来。

当从服务器断线并重新连上一个主服务器时,从服务器将向当前连接的主服务器发送之前保存的运行ID:

如果从服务器保存的运行ID和当前连接的主服务器的运行ID相同,那么说明从服务器断线之前复制的就是当前连接的这个主服务器,主服务器可以继续尝试执行部分重同步操作。

相反地,如果从服务器保存的运行ID和当前连接的主服务器的运行ID并不相同,那么说明从服务器断线之前复制的主服务器并不是当前连接的这个主服务器,主服务器将对从服务器执行完整重同步操作。

举个例子,假设从服务器原本正在复制一个运行ID为53b9b28df8042fdc9ab5e3fcbbbabff1d5dce2b3的主服务器,那么在网络断开,从服务器重新连接上主服务器之后,从服务器将向主服务器发送这个运行ID,主服务器根据自己的运行ID是否53b9b28df8042fdc9ab5e3fcbbbabffld5dce2b3来判断是执行部分重同步还是执行完整重同步。

3.PSYNC命令的实现

到目前为止,本文在介绍PSYNC命令时一直没有说明PSYNC命令的参数以及返回值,因为那时我们还未了解服务器运行ID、复制偏移量、复制积压缓冲区这些东西,在学习了部分重同步的实现原理之后,我们现在可以来了解PSYNC命令的完整细节了。

PSYNC命令的调用方法有两种:

如果从服务器以前没有复制过任何主服务器,或者之前执行过SLAVEOF no one命令,那

么从服务器在开始一次新的复制时将向主服务器发送PSYNC - 1命令,主动请求主服务器进行完整重同步(因为这时不可能执行部分重同步)。

相反地,如果从服务器已经复制过某个主服务器,那么从服务器在开始一次新的复制时将向主服务器发送PSYNC <runid> <offset>命令:其中runid是上一次复制的主服务器的运行ID,而offset则是从服务器当前的复制偏移量,接收到这个命令的主服务器会通过这两个参数来

判断应该对从服务器执行哪种同步操作。

根据情况,接收到PSYNC命令的主服务器会向从服务器返回以下三种回复的其中一种:

如果主服务器返回+FULLRESYNC <runid> <offset>回复,那么表示主服务器将与从服务器执行完整重同步操作:其中runid是这个主服务器的运行ID,从服务器会将这个ID保存起来,

在下一次发送PSYNC命令时使用;而offset则是 主服务器当前的复制偏移量,从服务器会将这个值作为自已的初始化偏移量。

如果主服务器返回+CONTINUE回复,那么表示主服务器将与从服务器执行部分重同步操作,从服务器只要等着主服务器将自己缺少的那部分数据发送过来就可以了。

如果主服务器返回-ERR回复,那么表示主服务器的版本低于Redis 2.8,它识别不了PSYNC命令,从服务器将向主服务器发送SYNC命令,并与主服务器执行完整同步操作。

下面的流程图总结了PSYNC命令执行完整重同步和部分重同步时可能遇上的情况。

 

4.复制的实现

通过向从服务器发送SLAVEOF命令,我们可以让一个从服务器去复制一个主服务器:

SLAVEOF <master_ip> <master_port>

本节将以从服务器127.0.0.1: 12345接收到命令为例,展示复制功能的详细步骤:

SLAVEOF 127.0.0.1 6379

4.1步骤1:设置主服务器的地址和端口

当客户端向从服务器发送以下命令时:

127.0.0.1:12345> SLAVEOF 127.0.0.1 6379
OK

从服务器首先要做的就是将客户端给定的主服务器IP地址127.0.0.1以及端口6379保存到服务器状态的masterhost属性和masterport属性里面,下图展示了SLAVEOF命令执行之后,从服务器的服务器状态。

SLAVEOF命令是一个异步命令,在完成masterhost属性和masterport属性的设置工作之后,从服务器将向发送SLAVEOF命令的客户端返回0K,表示复制指令已经被接收,而实际的复制工作将在0K返回之后才真正开始执行。

4.2步骤2:建立套接字连接

在SLAVEOF命令执行之后,从服务器将根据命令所设置的IP地址和端口,创建连向主服务器的套接字连接,如下图所示。

如果从服务器创建的套接字能成功连接(connect) 到主服务器,那么从服务器将为这个套接字关联一个专门用于处理复制工作的文件事件处理器,这个处理器将负责执行后续的复制工作,比如接收RDB文件,以及接收主服务器传播来的写命令,诸如此类。

而主服务器在接受(accept)从服务器的套接字连接之后,将为该套接字创建相应的客户端状态,并将从服务器看作是一个连接到主服务器的客户端来对待,这时从服务器将同时具有服务器(server)和客户端(client)两个身份:从服务器可以向主服务器发送命令请求,而主服务器则会向从服务器返回命令回复,如下图所示。

因为复制工作接下来的几个步骤都会以从服务器向主服务器发送命令请求的形式来进行,所以理解“从服务器是主服务器的客户端”这一点非常重要。

4.3步骤3:发送PING命令

从服务器成为主服务器的客户端之后,做的第一件事就是向主服务器发送一个PING命令,如下图所示。

这个PING命令有两个作用:

虽然主从服务器成功建立起了套接字连接,但双方并未使用该套接字进行过任何通信,通过发送PING命令可以检查套接字的读写状态是否正常。

因为复制工作接下来的几个步骤都必须在主服务器可以正常处理命令请求的状态下才能进行,通过发送PING命令可以检查主服务器能否正常处理命令请求。

从服务器在发送PING命令之后将遇到以下三种情况的其中一种:

如果主服务器向从服务器返回了一个命令回复,但从服务器却不能在规定的时限(timeout)内读取出命令回复的内容,那么表示主从服务器之间的网络连接状态不佳,不能继续执行复制工作的后续步骤。当出现这种情况时,从服务器断开并重新创建连向主服务器的套接字。

如果主服务器向从服务器返回一个错误,那么表示主服务器暂时没办法处理从服务器的命令请求,不能继续执行复制工作的后续步骤。当出现这种情况时,从服务器断开并重新创建连向主服务器的套接字。比如说,如果主服务器正在处理一个超时运行的脚本,那么当从服务器向主服务器发送PING命令时,从服务器将收到主服务器返回的BUSY Redisis busy running a script. You can only call SCRIPT KILL or SHUTDOWN NOSAVE.错误。

如果从服务器读取到"PONG"回复,那么表示主从服务器之间的网络连接状态正常,并且主服务器可以正常处理从服务器(客户端)发送的命令请求,在这种情况下,从服务器可以继续执行复制工作的下个步骤。

下面流程图总结了从服务器在发送PING命令时可能遇到的情况,以及各个情况的处理方式。

 

4.4步骤4:身份验证

从服务器在收到主服务器返回的"PONG"回复之后,下一步要做的就是决定是否进行身份验证:

如果从服务器设置了masterauth选项,那么进行身份验证。

如果从服务器没有设置masterauth选项,那么不进行身份验证。

在需要进行身份验证的情况下,从服务器将向主服务器发送一条AUTH命令,命令的参数为从服务器masterauth选项的值。

举个例子,如果从服务器masterauth选项的值为10086,那么从服务器将向主服务器发送命令AUTH 10086,如下图所示。

 

从服务器在身份验证阶段可能遇到的情况有以下几种:

如果主服务器没有设置requirepass选项,并且从服务器也没有设置masterauth选项,那么主服务器将继续执行从服务器发送的命令,复制工作可以继续进行。

如果从服务器通过AUTH命令发送的密码和主服务器requirepass选项所设置的密码相同,那么主服务器将继续执行从服务器发送的命令,复制工作可以继续进行。与此相反,如果主从服务器设置的密码不相同,那么主服务器将返回一个invalid password错误。

如果主服务器设置了requirepass选项,但从服务器却没有设置masterauth选项,那么主服务器将返回一个NOAUTH错误。另一方面,如果主服务器没有设置requirepass选项,但从服务器却设置了masterauth选项,那么主服务器将返回一个no password is set错误。

所有错误情况都会令从服务器中止目前的复制工作,并从创建套接字开始重新执行复制,直到身份验证通过,或者从服务器放弃执行复制为止。

下面的流程图总结了从服务器在身份验证阶段可能遇到的情况,以及各个情况的处理方式。

 

4.5步骤5:发送端口信息

在身份验证步骤之后,从服务器将执行命令REPLCONF listening-port<port-number>,向主服务器发送从服务器的监听端口号。

例如在我们的例子中,从服务器的监听端口为12345,那么从服务器将向主服务器发送命令REPLCONF listening-port 12345,如下图所示。

主服务器在接收到这个命令之后,会将端口号记录在从服务器所对应的客户端状态的slave_ listening_port属性中。

slave_listening_port属性目前唯一的作用就是在主服务器执行INF0.replication命令时打印出从服务器的端口号。

4.6步骤6:同步

在这一步,从服务器将向主服务器发送PSYNC命令,执行同步操作,并将自己

的数据库更新至主服务器数据库当前所处的状态。

值得一提的是,在同步操作执行之前,只有从服务器是主服务器的客户端,但是在执行同步操作之后,主服务器也会成为从服务器的客户端:

如果PSYNC命令执行的是完整重同步操作,那么主服务器需要成为从服务器的客户端,才能将保存在缓冲区里面的写命令发送给从服务器执行。

如果PSYNC命令执行的是部分重同步操作,那么主服务器需要成为从服务器的客户端,才能向从服务器发送保存在复制积压缓冲区里面的写命令。

因此,在同步操作执行之后,主从服务器双方都是对方的客户端,它们可以互相向对方发送命令请求,或者互相向对方返回命令回复,如下图所示。

正因为主服务器成为了从服务器的客户端,所以主服务器才可以通过发送写命令来改变从服务器的数据库状态,不仅同步操作需要用到这一点,这也是主服务器对从服务器执行命令传播操作的基础。

4.7步骤7:命令传播

当完成了同步之后,主从服务器就会进入命令传播阶段,这时主服务器只要一直将自己执行的写命令发送给从服务器,而从服务器只要直接收并执行主服务器发来的写命令,就可以保证主从服务器保持一致了。

总结:

Redis2.8以前的复制功能不能高效地处理断线后重复制情况,但Redis2.8新添加的部分重同步功能可以解决这个问题。

部分重同步通过复制偏移量、复制积压缓冲区、服务器运行ID三个部分来实现。

在复制操作刚开始的时候,从服务器会成为主服务器的客户端,并通过向主服务器发送命令请求来执行复制步骤,而在复制操作的后期,主从服务器会互相成为对方的客户端。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/73418.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络协议栈-基础知识

1、分层模型 1.1、OSI七层模型 1、OSI&#xff08;Open System Interconnection&#xff0c;开放系统互连&#xff09;七层网络模型称为开放式系统互联参考模型 &#xff0c;是一个逻辑上的定义&#xff0c;一个规范&#xff0c;它把网络从逻辑上分为了7层。 2、每一层都有相关…

工厂方法模式-java实现

介绍 工厂方法模式&#xff0c;通过把工厂抽象为一个接口&#xff0c;这样当我们新增具体产品的时候&#xff0c;就只需要实现一个新的具体工厂类即可。一个具体工厂类&#xff0c;对应着一个产品。 请注意&#xff1a;在工厂方法模式中&#xff0c;一个具体工厂类只对应生产…

FPGA + WS2812采灯控制

文章目录 一、WS2812C-2020-V11、产品概述2、引出端排列及功能3、数据传输时间4、数据传输方法 二、使用WS2812C显示图片1、静态显示2、动态显示 一、WS2812C-2020-V1 1、产品概述 WS2812C-2020-V1是一个集控制电路与发光电路于一体的智能外控LED光源&#xff1b;其外型采用最…

谷粒商城第十一天-完善商品分组(主要添上关联属性)

目录 一、总述 二、前端部分 2.1 改良前端获取分组列表接口及其调用 2.2 添加关联的一整套逻辑 三、后端部分 四、总结 一、总述 前端部分和之前的商品品牌添加分类差不多。 也是修改一下前端的分页获取列表的接口&#xff0c;还有就是加上关联的那一套逻辑&#xff0c;…

7.3 详解NiN模型--首次使用多层感知机(1x1卷积核)替换掉全连接层的模型

一.前提知识 多层感知机&#xff1a;由一个输入层&#xff0c;一个或多个隐藏层和一个输出层组成。&#xff08;至少有一个隐藏层&#xff0c;即至少3层&#xff09; 全连接层&#xff1a;是MLP的一种特殊情况&#xff0c;每个节点都与前一层的所有节点连接&#xff0c;全连接…

7.5.tensorRT高级(2)-RAII接口模式下的生产者消费者多batch实现

目录 前言1. RAII接口模式封装生产者消费者2. 问答环节总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 tensorRT 高级-RAI…

前后端分离------后端创建笔记(05)用户列表查询接口(上)

本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论&#xff0c;如有侵权请联系 源码&#xff1a;https://gitee.com/green_vegetables/x-admin-project.git 素材&#xff1a;https://pan.baidu.com/s/…

City Walk带动茶饮品牌售1200万,媒介盒子带你探究奥秘

年轻人生活趋势又出现了一个新鲜词——City Walk&#xff0c;简单来说&#xff0c;City Walk就是没有目的地&#xff0c;没有目标&#xff0c;只是出行&#xff0c;填充自己的生活。 其实这个词源于gap year&#xff0c;而这个说法一直是国外的一些毕业生&#xff0c;大多会在…

plt取消坐标轴刻度、自定义取消绘图边框(或坐标轴)、白边处理、自定义颜色图谱、设置坐标轴刻度朝向

目录 1、取消坐标轴刻度 2、自定义取消绘图边框&#xff08;或坐标轴&#xff09; 3、去掉图片周边白边 4、自定义颜色图谱 5、设置坐标轴刻度朝向 import matplotlib.pyplot as plt 1、取消坐标轴刻度 ax plt.subplot() ax.set_xticks([]) ax.set_yticks([]) 2、自定…

自定义 视频/音频 进度条

复制代码根据自己需求改动就可以了 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><metaname"viewport"conten…

模仿火星科技 基于cesium+水平面积测量+可编辑

​ 当您进入Cesium的编辑水平积测量世界&#xff0c;下面是一个详细的操作过程&#xff0c;帮助您顺利使用这些功能&#xff1a; 1. 创建提示窗&#xff1a; 启动Cesium应用&#xff0c;地图场景将打开&#xff0c;欢迎您进入编辑模式。 在屏幕的一角&#xff0c;一个友好的提…

计算机网络:网络通信相关概念入门

目录 一、网络发展背景二、理解网络通信三、理解IP地址1.简述IP地址2.IP地址的版本3.提高地址利用率的技术 四、理解端口1.简述端口2.使用端口的原因 五、理解网络通信协议 一、网络发展背景 网络发展背景&#xff1a; 最初的计算机是单机&#xff0c;那么单机是这样传输数据的…

【金融量化】Python实现根据收益率计算累计收益率并可视化

1 理论 理财产品&#xff08;本金100元&#xff09; 第1天&#xff1a;3% &#xff1a;&#xff08;13%&#xff09; ✖ 100 103 第2天&#xff1a;2% &#xff1a;&#xff08;12%&#xff09;✖ 以上 103 2.06 第3天&#xff1a;5% : &#xff08;15%&#xff09;✖ 以上…

企业直播MR虚拟直播(MR混合现实直播技术)视频介绍

到底什么是企业直播MR虚拟直播&#xff08;MR混合现实直播技术&#xff09;&#xff1f; 企业直播MR虚拟直播新玩法&#xff08;MR混合现实直播技术&#xff09; 我的文章推荐&#xff1a; [视频图文] 线上研讨会是什么&#xff0c;企业对内对外培训可以用线上研讨会吗&#x…

2023年新学期12306高铁火车学生票如何在线核验享受优惠?

2023学年优惠资质核验已开始&#xff0c;完成学生优惠资质核验后&#xff0c;您可以在线购买2022年10月1日至2023年9月30日的学生优惠票。&#xff08;注&#xff1a;非该时间段需要重新核验&#xff0c;可享受学生优惠票&#xff09;&#xff1b; 『扩展阅读』 1、美团外卖红…

QT:UI控件(按设计师界面导航界面排序)

基础部分 创建新项目&#xff1a;QWidget&#xff0c;QMainWindow&#xff0c;QDialog QMainWindow继承自QWidget&#xff0c;多了菜单栏; QDialog继承自QWidget&#xff0c;多了对话框 QMainWindow 菜单栏和工具栏&#xff1a; Bar: 菜单栏&#xff1a;QMenuBar&#xff0…

【Sklearn】基于随机森林算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于随机森林算法的数据分类预测&#xff08;Excel可直接替换数据&#xff09; 1.模型原理1.1 模型原理1.2 数学模型 2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果 1.模型原理 随机森林&#xff08;Random Forest&#xff09;是一种集成学习方法…

【深度学习】PyTorch快速入门

【深度学习】学习PyTorch基础 介绍PyTorch 深度学习框架是一种软件工具&#xff0c;旨在简化和加速构建、训练和部署深度学习模型的过程。深度学习框架提供了一系列的函数、类和工具&#xff0c;用于定义、优化和执行各种深度神经网络模型。这些框架帮助研究人员和开发人员专注…

RabbitMQ 安装教程

RabbitMQ 安装教程 特殊说明 因为RabbitMQ基于Erlang开发&#xff0c;所以安装时需要先安装Erlang RabbitMQ和Erlang版本对应关系 查看地址&#xff1a;www.rabbitmq.com/which-erlan… 环境选择 Erlang: 23.3及以上 RabbitMQ: 3.10.1Windows 安装 1. 安装Erlang 下载地…