Linux驱动开发笔记(十三)Sysfs文件系统

文章目录

  • 前言
  • 一、Sysfs
    • 1.1 Sysfs的引入
    • 1.2 Sysfs的目录结构
    • 1.2 Sysfs的目录详解
      • 1.2.1 devices
      • 1.2.2 bus
      • 1.2.3 class
      • 1.2.4 devices、bus、class目录之间的关系
      • 1.2.5 其他子目录
  • 二、Sysfs使用
    • 2.1 核心数据结构
    • 2.2 相关函数
      • 2.2.1 kobject_create_and_add
      • 2.2.2 kobject_put()
      • 2.2.3 kobject_get()
      • 2.2.4 sysfs_create_file
    • 2.3 设计思路


前言

  前面章节驱动学习中,我们测试驱动时经常使用/sys目录下文件,我们本章就简单介绍下Sysfs文件系统。

一、Sysfs

1.1 Sysfs的引入

  Sysfs是Linux内核的一种虚拟文件系统,用于导出内核对象的属性和状态,使用户空间能够方便地访问和管理这些信息。Sysfs在Linux内核2.6版本中引入,旨在替代和扩展早期的proc文件系统。它提供了一种统一的接口,用于查看和操作设备、驱动程序、文件系统等内核对象。Sysfs采用层次化的目录结构,反映了内核对象之间的关系,目录和文件分别表示内核对象及其属性。
  内核对象(如设备、驱动程序等)在sysfs中被表示为目录,目录下的文件表示对象的属性。这些文件通常是只读的,但有些也可以通过写操作进行配置。
  通过sysfs,用户可以统一地访问不同类型的内核信息,而不需要关心底层实现细节。Sysfs内容会随着系统硬件配置的变化动态更新。例如,插拔设备会导致相应的sysfs目录和文件创建或删除。

1.2 Sysfs的目录结构

  Sysfs文件系统是一种虚拟文件系统,也就是文件系统中文件不对应硬盘上任何文件,存在于内存中,其通常挂载在/sys目录下,主要目录包括:

/sys/devices:表示系统中的物理设备,每个子目录对应一个设备。
/sys/class:表示系统中的设备类别(如网络设备、块设备等),子目录按类别分类。
/sys/block:表示块设备(如硬盘、USB存储设备等)。
/sys/bus:表示系统总线类型(如PCI、USB等),每个子目录对应一个总线。
/sys/kernel:表示内核参数和信息,如调度器参数、内核模块等。
/sys/module:表示加载的内核模块,每个子目录对应一个模块,包含模块参数和状态信息。

  Sysfs是通过内核中的对象模型(kobject)实现的。每个kobject都可以在sysfs中创建一个对应的目录,kobject的属性(kobj_attribute)则映射为sysfs中的文件。通过定义和注册kobject和kobj_attribute,内核模块可以在sysfs中创建自己的条目。这些目录是在子系统注册kobject核心的系统启动时刻产生的, 当它们被初始化以后, 它们开始搜寻在各自的目录内注册了的对象。 一个kobject对应一个目录,包含的对象属性对应一个文件,文件只支持 目录、 普通文件 (文本或二进制文件)和 符号链接文件三种类型。

1.2 Sysfs的目录详解

1.2.1 devices

  devices目录反映系统中所有物理设备及其层次结构,设备按照硬件拓扑结构组织,表示设备的物理连接关系。/sys/devices是内核对系统中所有设备的分层次表达模型, 也是/sys文件系统管理设备的最重要的目录结构。其目录结构如下:

  • 系统设备:如 CPU、系统内存等。
  • 总线设备:例如 PCI、USB、SCSI 等设备。
  • 虚拟设备:如虚拟网络设备。

1.2.2 bus

  bus目录包含系统中所有已注册总线类型的子目录,每个子目录表示一种总线类型,例如 PCI、USB、I2C 等。这里是设备按照总线类型分层放置的目录结构, 每个子目录(总线类型)下包含两个子目录——devices和drivers文件夹;其中devices下是该总线类型下的所有设备, 而这些设备都是符号链接,它们分别指向真正的设备(/sys/devices/下);如下图bus下的usb总线中的device则是Devices目 录下/pci()/dev 0:10/usb2的符号链接。而drivers下是所有注册在这个总线上的驱动,每个driver子目录下 是一些可以观察和修改的driver参数。其目录结构如下:

  • devices:列出所有连接到该总线的设备。
  • drivers:列出与该总线相关的所有驱动程序。
  • drivers_autoprobe 和 drivers_probe:用于自动或手动驱动程序绑定。
  • uevent:用于触发 uevent 事件。

1.2.3 class

  class 目录按设备类型对设备进行分类,每个子目录表示一种设备类型,例如网络设备、块设备、字符设备等。其目录结构如下:

  • net:表示所有网络接口。
  • block:表示所有块设备。
  • tty:表示所有终端设备。

注:大家可能注意到在/sys/class目录下也存在一个block子目录,这是由于历史遗留因素而导致的。 块设备现在是已经移到/sys/class/block, 旧的接口/sys/block为了向后兼容保留存在,现在该目录下的都是链接文件

1.2.4 devices、bus、class目录之间的关系

在这里插入图片描述

  • /sys/devices 目录表示设备的物理连接和层次结构,而 /sys/class 目录按设备功能或类型对设备进行逻辑分类。
  • /sys/bus 目录表示系统中的各种总线类型,每种总线都有一个子目录,包含该总线上的设备(链接到 /sys/devices)和驱动程序信息。
  • /sys/devices 中的设备可能会在 /sys/bus/<bus_type>/devices 下有一个符号链接,反映设备与总线的关系。/sys/class 提供了按设备类型的视图,使用户能够方便地找到特定类型的设备,而无需了解设备的具体物理连接位置。

  以上图的USB 存储设备插入系统为例,以下是目录之间关系的具体示例:

//表示 USB 存储设备的物理连接路径
ls /sys/devices/pci0000:00/0000:00:14.0/usb1/1-1

//目录中包含指向上述设备的符号链接,表示它是一个 USB 设备
ls /sys/bus/usb/devices

//目录中包含该设备的逻辑分类信息,表示它是一个块设备
ls /sys/class/block/sda

1.2.5 其他子目录

  在Sysfs文件系统中最重要的就是以上三个子目录,其他子目录我们简单了解即可。
firmware目录
  该目录包含具有固件对象和属性的子目录,关于内核的固件加载和firmware驱动,有兴趣可以自己去了解下。其目录结构如下:

  • devicetree:描述加载设备树信息,根节点对应base目录,每一个设备树节点对应一个目录,每个属性对应一个文件
  • fdt:原始dtb文件,是uboot传给内核的设备树文件,可以使用hexdump -C查看

fs目录
  这里按照设计是用于描述系统中所有文件系统,包括文件系统本身和按文件系统分类存放的已挂载点,描述已注册的文件系统视图, 但目前只有 fuse,ext4 等少数文件系统支持 sysfs 接口,一些传统的虚拟文件系统(VFS)层次控制参数仍然在sysctl(/proc/sys/fs) 接口中。
kernel目录
  该目录是内核所有可调整参数的位置,有些内核可调整参数仍然位于sysctl(/proc/sys/kernel)接口中。
module目录
  该目录有系统中所有模块的信息,不论这些模块是以内联(inlined)方式编译到内核映像文件(vmlinuz)中还是编译为外部模块(.ko文件), 都可能会出现在/sys/module目录下。
  编译为外部模块(.ko文件)在加载后,会/sys/module/出现对应的模块文件夹,在这个文件夹下会出现一些属性文件和属性目录, 表示此外部模块的一些信息,如版本号、加载状态、所提供的驱动程序等。
  编译进内核的模块则只在当它有非0属性的模块参数时会出现对应的/sys/module/, 这些模块的可用参数会出现在/sys/modules/parameters/中, 如:/sys/module/printk/parameters/time 这个可读写参数控制着内联模块printk在打印内核消息时是否加上时间前缀。
power目录
  该目录下是系统中电源选项,包含电源管理子系统提供的统一接口文件。 一些属性文件可以用于控制整个机器的电源状态,如可以向其中写入控制命令进行关机、重启等操作。

二、Sysfs使用

2.1 核心数据结构

  kobject是 Linux内核中的一个核心数据结构,用于表示内核中的对象并支持内核对象的引用计数、生命周期管理和对象间关系管理。它主要用于内核的设备模型(device model)以及 sysfs 文件系统的实现。kobject 提供了一个通用的机制来管理对象,这样不同的子系统可以共享一些通用的代码来处理对象。

struct kobject {
    const char        *name;
    struct list_head  entry;
    struct kobject    *parent;
    struct kset       *kset;
    struct kobj_type  *ktype;
    struct kernfs_node *sd;
    struct kref       kref;
    unsigned int      state_initialized:1;
    unsigned int      state_in_sysfs:1;
    unsigned int      state_add_uevent_sent:1;
    unsigned int      state_remove_uevent_sent:1;
    unsigned int      uevent_suppress:1;
};
  • 关键成员解释
    • name:kobject 的名字,用于在 sysfs 文件系统中表示对象的名字。
    • parent:指向父对象的指针,用于形成层次结构,表示对象之间的包含关系。
    • kref:内核引用计数机制的对象,用于确保 kobject 在引用计数为零之前不会被释放。
    • ktype:指向 kobj_type 结构体的指针,kobj_type 定义了 kobject 的特定操作,如释放函数、sysfs 文件操作等。
    • kset:指向 kset 结构体的指针,一个 kset 是一组相关 kobject 的集合,可以用来组织和管理一组相关的对象。
    • sd:指向 kernfs_node 结构体的指针,表示 sysfs 中的目录项。
    • state_initialized 等标志位:用于跟踪对象的状态,如是否已初始化、是否已添加到 sysfs 中等。

  kobj_attribute是一个用于为kobject(内核对象)创建属性的结构体。这些属性可以通过sysfs文件系统进行读取或写入,sysfs提供了一种机制,让内核子系统、设备驱动程序和其他内核模块可以向用户空间导出信息。kobj_attribute结构体定义在linux/kobject.h中,包含以成员:

  • struct attribute attr: 一个通用的属性结构体,包含属性的名称和权限模式。
  • ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr, char *buf): 指向显示方法的函数指针,当读取属性时调用该方法。
  • ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count): 指向存储方法的函数指针,当写入属性时调用该方法。

  __ATTR宏用于方便地定义struct attribute类型的结构体成员。它通常与kobj_attribute结构体一起使用,来定义sysfs属性。

#define __ATTR(_name, _mode, _show, _store) { \
    .attr = { .name = __stringify(_name), .mode = _mode }, \
    .show   = _show, \
    .store  = _store, \
}
  • 参数说明
    • _name:属性的名称。
    • _mode:属性的权限模式,如0644,表示所有者可读写,组和其他用户可读。
    • _show:指向显示函数的指针,该函数在读取属性时被调用。
    • _store:指向存储函数的指针,该函数在写入属性时被调用。

2.2 相关函数

  更多的函数可以参考内核源码include/linux/sysfs.h文件。

2.2.1 kobject_create_and_add

//函数用于创建、初始化并将kobject添加到系统中
struct kobject *kobject_create_and_add ( const char *name, struct kobject *parent);
  • 参数
    • name:创建kobj的名字
    • parent:指定父kobject,实际就是在那个目录下创建一个目录。比如为kernel_kobj,将在/sys/kernel目录下创建目录,如果为NULL,将在/sys下创建。
  • 返回值
    • 成功:指向新创建并添加的 kobject 结构体的指针
    • 失败:NULL

2.2.2 kobject_put()

//用于减少kobject的引用计数,当引用计数降为零时会释放该对象。
void kobject_put(struct kobject *kobj);
  • 参数:
    • kobj:指向要减少引用计数的 kobject 结构体。

2.2.3 kobject_get()

//用于增加kobject的引用计数
struct kobject *kobject_get(struct kobject *kobj);
  • 参数:
    • kobj:指向要增加引用计数的 kobject 结构体。
  • 返回值:
    • 成功:返回 kobj,或者如果 kobj 为 NULL 则返回 NULL。

2.2.4 sysfs_create_file

//创建一个文件
int sysfs_create_file ( struct kobject *  kobj, const struct attribute * attr);
  • 参数:
    • kobj:我们创建的kobject
    • attr:属性描述
  • 返回值:
    • 成功:0
    • 错误:错误码

2.3 设计思路

  在内核中,创建和使用 kobject 通常需要以下步骤:

  • 初始化并添加到 sysfs:使用 kobject_create_and_add函数创建kobject并添加到sysfs文件系统中。
  • 增加引用计数:使用 kobject_get() 增加引用计数。
  • 减少引用计数并释放:使用 kobject_put() 减少引用计数,当引用计数降到零时,kobject 会被释放。
//示例
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/module.h>
#include <linux/init.h>


static struct kobj_attribute foo_attribute = __ATTR(foo, 0664, foo_show, foo_store);
static struct kobject *example_kobj;

static ssize_t foo_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) {
    return sprintf(buf, "%d\n", 123);  // 显示的示例值
}

static ssize_t foo_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) {
    // 处理存储的示例逻辑
    int val;
    sscanf(buf, "%d", &val);
    printk(KERN_INFO "新值: %d\n", val);
    return count;
}

static int __init example_init(void) {
    int error;

    example_kobj = kobject_create_and_add("example_kobject", kernel_kobj);
    if (!example_kobj)
        return -ENOMEM;

    error = sysfs_create_file(example_kobj, &foo_attribute.attr);
    if (error) {
        kobject_put(example_kobj);
    }

    return error;
}

static void __exit example_exit(void) {
    kobject_put(example_kobj);
}

module_init(example_init);
module_exit(example_exit);
MODULE_LICENSE("GPL");

免责声明:本内容部分参考野火科技及其他相关公开资料,若有侵权或者勘误请联系作者。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/733037.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

视觉理解与图片问答,学习如何使用 GPT-4o (GPT-4 Omni) 来理解图像

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 一、引言 OpenAI 最新发布的 GPT-4 Omni 模型&#xff0c;也被称为 GPT-4o&#xff0c;是一个多模态 AI 模型&#xff0c;旨在提供更加自然和全面的人机交互体验。 GPT-4o 与 GPT-4 Turbo 都具备视觉功…

MySQL程序使用的选项文件

MySQL程序使用的选项文件如下&#xff1a; 显示帮助消息并退出。 在具有多个网络接口的计算机上&#xff0c;使用此选项可以选择用于连接MySQL服务器的接口。 安装字符集的目录。 如果可能&#xff0c;压缩客户端和服务器之间发送的所有信息。 从MySQL 8.0.18开始&#xff0c;…

【因果推断python】50_去偏/正交机器学习2

目录 Frisch-Waugh-Lovell on Steroids CATE Estimation with Double-ML Frisch-Waugh-Lovell on Steroids 双重/偏差 ML 其思想非常简单&#xff1a;在构建结果和治疗残差时使用 ML 模型&#xff1a; 是估计&#xff0c;是估计 我们的想法是&#xff0c;ML 模型具有超强的…

【RK3588/算能/Nvidia智能盒子】AI算法应用于中国生物疫苗生产过程智能监测,赋能生产安全,提升品质管控

因操作失误导致食品药品质量事故频发 计算机视觉检测技术为监管提供新思路 近年来&#xff0c;各类因人员操作失误导致的食品药品质量事故不断发生。例如有员工取出原材料及称重确认时未进行双人复核导致“混药”、员工未能按照生产步骤对生牛奶进行杀菌导致奶酪污染、员工误将…

webpack5入门,根据官方文档简单学习,简单总结

c.**loader加载器&#xff1a;**webpack 只能理解 JS文件和 JSON 文件&#xff0c;loader 让 webpack 能够去处理其他类型的文件&#xff0c;并将它们转换为有效 模块&#xff0c;以供应用程序使用&#xff0c;以及被添加到依赖图中。&#xff08;比如css&#xff0c;less&…

人人讲视频如何下载

一、工具准备 1.VLC media player 2.谷歌浏览器 二、视频下载 1.打开人人讲网页&#xff0c;需要下载的视频 谷歌浏览器打开调试窗口 搜索m3u8链接 拷贝到VLCplayer打开网络串流方式打开测试是否能正常播放 2.下载视频 能正常播放后&#xff0c;切换播放为转换选择mp4格式…

分享excel全套教程速成,高效人士的Excel必修课,附视频课程!

我是阿星。今天&#xff0c;我要来聊聊那些让Excel变得像魔法一样的课程&#xff0c;它们能让你们在办公室里像超人一样高效。别急&#xff0c;听我慢慢道来。 首先&#xff0c;得说说这些课程&#xff0c;它们都是mp4格式&#xff0c;就像电影一样&#xff0c;但比电影实用多…

Python一文轻松搞定正则匹配

一、前言 日常工作中&#xff0c;不可避免需要进行文件及内容的查找&#xff0c;替换操作&#xff0c;python的正则匹配无疑是专门针对改场景而出现的&#xff0c;灵活地运用可以极大地提高效率&#xff0c;下图是本文内容概览。 ​ 二、正则表达式符号 对于所有的正则匹配表达…

强化学习中的自我博弈(self-play)

自我博弈&#xff08;Self-Play&#xff09;[1]是应用于智能体于智能体之间处于对抗关系的训练方法&#xff0c;这里的对抗关系指的是一方的奖励上升必然导致另一方的奖励下降。通过轮流训练双方的智能体就能使得双方的策略模型的性能得到显著提升&#xff0c;使得整个对抗系统…

动态规划02(Leetcode62、63、343、96)

参考资料&#xff1a; https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html 62. 不同路径 题目描述&#xff1a; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移…

STM32之二:时钟树

目录 1. 时钟 2. STM3时钟源&#xff08;哪些可以作为时钟信号&#xff09; 2.1 HSE时钟 2.1.1 高速外部时钟信号&#xff08;HSE&#xff09;来源 2.1.2 HSE外部晶体电路配置 2.2 HSI时钟 2.3 PLL时钟 2.4 LSE时钟 2.5 LSI时钟 3. STM32时钟&#xff08;哪些系统使用时…

html做一个分组散点图图的软件

在HTML中创建一个分组散点图&#xff0c;可以结合JavaScript库如D3.js或Plotly.js来实现。这些库提供了强大的数据可视化功能&#xff0c;易于集成和使用。下面是一个使用Plotly.js创建分组散点图的示例&#xff1a; 要添加文件上传功能&#xff0c;可以让用户上传包含数据的文…

使用 Python 进行测试(6)Fake it...

总结 如果我有: # my_life_work.py def transform(param):return param * 2def check(param):return "bad" not in paramdef calculate(param):return len(param)def main(param, option):if option:param transform(param)if not check(param):raise ValueError(…

matlab入门基础笔记

1、绘制简单三角函数&#xff1a; 绘制正弦曲线和余弦曲线。x[0:0.5:360]*pi/180; plot(x,sin(x),x,cos(x)); &#xff08;1&#xff09;明确x轴与y轴变量&#xff1a; 要求为绘制三角函数&#xff1a; X轴&#xff1a;角度对应的弧度数组 Y轴&#xff1a;对应sin(x)的值 求…

python pynput实现鼠标点击两坐标生成截图

脚本主要实现以下功能&#xff1a; 按ctrl开始截图&#xff0c;点击两个坐标&#xff0c;保存截图tk输出截图文本信息&#xff0c;文本输出内容倒序处理默认命名为A0自增。支持自定义名称&#xff0c;自增编号&#xff0c;修改自定义名称自增重新计算清空文本框内容 from pyn…

C++ (week8):数据库

文章目录 一、数据库简介1.数据库2.MySQL(1)数据库的结构(2)MySQL的三种使用方式(3)命令行(4)Navicat Premium 二、SQL1.SQL (Structured Query Language)&#xff0c;即结构化查询语言2.数据定义语言 DDL (Data Definition Language) &#xff0c;创建、修改、删除数据库、表结…

Leetcode3184. 构成整天的下标对数目 I

Every day a Leetcode 题目来源&#xff1a;3184. 构成整天的下标对数目 I 解法1&#xff1a;遍历 统计满足 i < j 且 hours[i] hours[j] 构成整天的下标对 i, j 的数目。 构成整天的条件&#xff1a;(hours[i] hours[j]) % 24 0。 代码&#xff1a; /** lc applee…

20分钟攻破DISCUZ论坛并盗取数据库(web安全白帽子)

20分钟攻破DISCUZ论坛并盗取数据库&#xff08;web安全白帽子&#xff09; 1 快速搭建discuz论坛1.1 攻击思路1.2 快速搭建实验环境1.2.1&#xff0c;漏洞概述1.2.2&#xff0c;在centos7虚拟机上搭建LAMP环境1.2.3&#xff0c;上传到discuz_X2_SC_UTF8.zip 到Linux系统/root下…

JAVA大型医院绩效考核系统源码:​医院绩效考核实施的难点痛点

JAVA大型医院绩效考核系统源码&#xff1a;​医院绩效考核实施的难点痛点 绩效考核数字化综合管理系统是一个基于数字化技术的管理平台&#xff0c;用于帮助企业、机构等组织进行绩效考评的各个环节的管理和处理。它将绩效考评的各个环节集成到一个系统中&#xff0c;包括目标…

RTA_OS基础功能讲解 2.10-调度表

RTA_OS基础功能讲解 2.10-调度表 文章目录 RTA_OS基础功能讲解 2.10-调度表一、调度表简介二、调度表配置2.1 同步三、到期点配置四、启动调度表4.1 绝对启动4.2 相对启动4.3 同步启动五、到期点处理六、停止调度表6.1 重新启动被停止的调度表七、切换调度表八、选择同步策略8.…