45、基于深度学习的螃蟹性别分类(matlab)

1、基于深度学习的螃蟹性别分类原理及流程

基于深度学习的螃蟹性别分类原理是利用深度学习模型对螃蟹的图像进行训练和识别,从而实现对螃蟹性别的自动分类。整个流程可以分为数据准备、模型构建、模型训练和性别分类四个步骤。

  1. 数据准备: 首先需要收集包含螃蟹图像和对应性别标签的数据集。数据集需要包含足够多的螃蟹图像,且每张图像需要标注正确的性别标签。然后对数据集进行预处理,如图像resize、归一化等操作。

  2. 模型构建: 在Matlab上选择适合的深度学习模型,如卷积神经网络(CNN)来构建螃蟹性别分类模型。可以选择预训练的模型,并进行微调以提高模型的性能。

  3. 模型训练: 将准备好的数据集输入到深度学习模型中,对模型进行训练。可以通过迭代训练的方式不断调整模型参数,提高模型的准确性和泛化能力。在训练过程中,需要对模型进行评估和调整,以提高模型对螃蟹性别的分类准确率。

  4. 性别分类: 训练好的模型可以用于测试新的螃蟹图像,对其性别进行分类。通过将图像输入到模型中,模型将输出螃蟹为雌性或雄性的概率。根据输出结果可以得到螃蟹的性别分类结果。

需要注意的是,在实际应用中,还需要考虑数据集的质量和数量、模型的选择和调整、训练参数的设置等方面的影响,以获得准确的螃蟹性别分类结果。

2、 基于深度学习的螃蟹性别分类说明

说明

使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。

方案

构建一个可根据螃蟹的物理测量值识别螃蟹性别的分类器

考虑螃蟹的六个物理特征:品种、前鳌、背宽、长度、宽度和厚度

现有问题是根据这 6 个物理特征的观测值识别螃蟹的性别。
六个物理特征将作为神经网络的输入,螃蟹的性别将成为目标。

根据由螃蟹的六个物理特征观测值构成的输入,神经网络应识别出螃蟹是雄性还是雌性。

通过将先前记录的输入提交给神经网络,然后调整网络以产生期望的目标输出来实现

 3、准备数据

1)数据说明

将数据组织成两个矩阵(输入矩阵 X 和目标矩阵 T)来为神经网络设置分类问题的数据。
输入矩阵的每个第 i 列将具有六个元素,表示螃蟹的品种、前鳌、背宽、长度、宽度和厚度。
目标矩阵的每个对应列将具有两个元素。第一个元素中的一表示雌蟹,第二个元素中的一表示雄蟹。

2)加载该数据集

[x,t] = crab_dataset;
size(x)
size(t)

ans =

     6   200


ans =

     2   200

4、构建神经网络分类器

1)设置随机种子来避免随机性

 代码

setdemorandstream(491218382)

 2)说明

双层(即,一个隐藏层)前馈神经网络可以学习任何输入-输出关系,前提是隐藏层中有足够的神经元。非输出层称为隐含层。
尝试具有 10 个神经元的单隐藏层。一般情况下,问题越困难,需要的神经元和层就越多。

代码

net = patternnet(10);
view(net)

视图效果

 3)开始训练

说明:样本自动分为训练集、验证集和测试集。训练集用于对网络进行训练。只要网络针对验证集持续改进,训练就会继续。测试集提供完全独立的网络准确度测量。

代码

[net,tr] = train(net,x,t);

试图效果

 4)均方误差

说明:性能以均方误差衡量,并以对数刻度显示。随着网络训练的加深,均方误差迅速降低。


代码

plotperform(tr)

视图效果

5、测试分类器 

1)使用测试样本测试经过训练的神经网络

 说明:网络输出的范围为 0 到 1,因此我们可以使用 vec2ind 函数根据每个输出向量中最高元素的位置来获取类索引。

代码

testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)

testIndices =

  列 1 至 16

     1     2     1     1     2     1     1     1     2     1     1     1     1     2     2     1

  列 17 至 30

     2     1     2     2     1     2     2     1     1     2     2     2     1     2

2) 混淆矩阵图

说明:混淆矩阵图:衡量神经网络数据拟合程度
该混淆矩阵显示了正确和错误分类的百分比。正确分类表示为矩阵对角线上的绿色方块。错误分类表示为红色方块。

代码

plotconfusion(testT,testY)

视图效果

3) 正确和错误分类的总体百分比

代码

[c,cm] = confusion(testT,testY)
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);

c =

    0.0333


cm =

    16     1
     0    13

Percentage Correct Classification   : 96.666667%
Percentage Incorrect Classification : 3.333333%

4) 受试者工作特征图

说明:显示随着输出阈值从 0 变为 1,假正率和真正率之间的相关性。
线条越偏向左上方,达到高的真正率所需接受的假正数越少。最佳分类器是线条从左下角到左上角再到右上角,或接近于该模式。

代码

plotroc(testT,testY)

视图效果

 6、总结

螃蟹性别分类是一个常见的生物学问题,可以通过深度学习技术实现自动化分类。在MATLAB中,可以利用深度学习工具包如Deep Learning Toolbox来构建和训练性别分类模型。

首先,需要准备一个包含大量螃蟹图像和对应性别标签的数据集。然后,可以利用MATLAB中的图像数据存储和预处理功能,将图像数据加载和准备好用于模型训练。接下来,可以构建一个深度学习模型,如卷积神经网络(CNN),用于学习图像特征和进行性别分类。

在模型构建之后,需要将数据集划分为训练集和测试集,并利用MATLAB中的深度学习工具包进行模型训练和评估。可以使用预训练模型进行迁移学习,也可以自己从头开始训练模型。通过调整模型结构和超参数,可以优化性能并提高性别分类准确率。

最后,可以利用训练好的深度学习模型对新的螃蟹图像进行性别分类。通过将图像输入模型并获取预测结果,可以快速准确地识别螃蟹的性别。整个过程中,MATLAB的深度学习工具包提供了强大的功能和便捷的编程接口,帮助用户轻松实现螃蟹性别分类任务。

7、源代码

代码

%% 基于深度学习的螃蟹性别分类
%说明:使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。
%方案:构建一个可根据螃蟹的物理测量值识别螃蟹性别的分类器。考虑螃蟹的六个物理特征:品种、前鳌、背宽、长度、宽度和厚度。现有问题是根据这 6 个物理特征的观测值识别螃蟹的性别。
%六个物理特征将作为神经网络的输入,螃蟹的性别将成为目标。根据由螃蟹的六个物理特征观测值构成的输入,神经网络应识别出螃蟹是雄性还是雌性。
%通过将先前记录的输入提交给神经网络,然后调整网络以产生期望的目标输出来实现
%% 准备数据
%说明:将数据组织成两个矩阵(输入矩阵 X 和目标矩阵 T)来为神经网络设置分类问题的数据。
%输入矩阵的每个第 i 列将具有六个元素,表示螃蟹的品种、前鳌、背宽、长度、宽度和厚度。
%目标矩阵的每个对应列将具有两个元素。第一个元素中的一表示雌蟹,第二个元素中的一表示雄蟹。
%加载该数据集
[x,t] = crab_dataset;
size(x)
size(t)
%% 构建神经网络分类器
%设置随机种子来避免随机性。
setdemorandstream(491218382)
%双层(即,一个隐藏层)前馈神经网络可以学习任何输入-输出关系,前提是隐藏层中有足够的神经元。非输出层称为隐含层。
%尝试具有 10 个神经元的单隐藏层。一般情况下,问题越困难,需要的神经元和层就越多。
net = patternnet(10);
view(net)
%开始训练。样本自动分为训练集、验证集和测试集。训练集用于对网络进行训练。只要网络针对验证集持续改进,训练就会继续。测试集提供完全独立的网络准确度测量。
[net,tr] = train(net,x,t);
%性能以均方误差衡量,并以对数刻度显示。随着网络训练的加深,均方误差迅速降低。
%绘图会显示训练集、验证集和测试集的性能。
plotperform(tr)
%% 测试分类器
%使用测试样本测试经过训练的神经网络。
%网络输出的范围为 0 到 1,因此我们可以使用 vec2ind 函数根据每个输出向量中最高元素的位置来获取类索引。
testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)
%混淆矩阵图:衡量神经网络数据拟合程度
%该混淆矩阵显示了正确和错误分类的百分比。正确分类表示为矩阵对角线上的绿色方块。错误分类表示为红色方块。
plotconfusion(testT,testY)
%正确和错误分类的总体百分比
[c,cm] = confusion(testT,testY)
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);
%受试者工作特征图
%显示随着输出阈值从 0 变为 1,假正率和真正率之间的相关性。
%线条越偏向左上方,达到高的真正率所需接受的假正数越少。最佳分类器是线条从左下角到左上角再到右上角,或接近于该模式。
plotroc(testT,testY)


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/732289.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

分享一个 Fail2ban 过滤规则

今天明月给大家分享个 Fail2ban 的过滤(Filter)规则,有关 Fail2ban 的文章大家可以参考【服务器全面使用 Fail2Ban 初见成效】和【使用 Fail2ban 禁止垃圾采集爬虫,保护 Nginx 服务器】等文了解,总之 Fail2ban 是 Linu…

如何跳出认知偏差,个人认知能力升级

一、教程描述 什么是认知力?认知力(cognitive ability),实际上就是指一个人的认知能力,是指人的大脑加工、储存和提取信息的能力,或者主观对非主观的事物的反映能力,如果变成大白话&#xff0c…

力扣SQL 即时食物配送 II min函数 嵌套查询

Problem: 1174. 即时食物配送 II 👨‍🏫 参考题解 Code -- 计算立即配送的订单百分比 select round (-- 计算订单日期与客户偏好配送日期相同的订单数量sum(case when order_date customer_pref_delivery_date then 1 else 0 end) * 100 /-- 计算总订…

媒体邀约中媒体采访应该如何做?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 媒体宣传加速季,100万补贴享不停,一手媒体资源,全国100城线下落地执行。详情请联系胡老师。 在媒体邀约中,媒体采访应该遵循以下几个步骤和…

[C#]使用深度学习算法opencvsharp部署RecRecNet广角图像畸变矫正校正摄像广角镜头畸变图像

【论文地址】 https://arxiv.org/abs/2301.01661 【训练源码】 https://github.com/KangLiao929/RecRecNet 【参考源码】 https://github.com/hpc203/recrecnet-opencv-dnn 【算法介绍】 广角镜头在VR技术中显示出诱人的应用,但它会在捕获的图像中引入严重的径…

如何下载和安装SQLynx数据库管理工具? (MySQL作为测试数据库)

目录 1. 官网下载 2. 安装软件 3. 启动SQLynx软件 4. 开始使用 5. 执行第一条SQL语句 6. 总结 SQLynx是一款先进的Web SQL集成开发环境(IDE),专为数据库管理、查询和数据分析设计。作为一个基于浏览器的工具(同时也支持桌面…

《计算机英语》Unit2 Operating System and Computer Architecture 操作系统和计算机构造

SectionA Operating System操作系统 不同操作系统 批处理操作系统(Batch Processing Operating System) 分时操作系统(Time Sharing Operating System) 实时操作系统(Real Time Operating System) 个人操作系统(Personal Operating System) 网络操作系统(NOS, Network Operati…

Android设计模式系列--模板方法模式

认识到模板方法的这种思想,父类可以让未知的子类去做它本身可能完成的不好或者根本完成不了的事情,对框架学习大有帮助。 本文以View中的draw方法为例,展开分析。 模板方法,TemplateMethod,光是学习这个模式&#xf…

SwiftUI 6.0(iOS 18)ScrollView 全新的滚动位置(ScrollPosition)揭秘

概览 在只有方寸之间大小的手持设备上要想体面的向用户展示海量信息,滚动视图(ScrollView)无疑是绝佳的“东牀之选”。 在 SwiftUI 历史的长河中,总觉得苹果对于 ScrollView 视图功能的升级是在“挤牙膏”。这不,在本…

“一站式企业服务平台”的功能架构

为提升区域营商环境,为促进区域经济发展,实现资源高效配置,全国各区域政府及产业园区都越来越重视如何创新企业服务机制、提升企业服务水平,来保障区域内的企业稳定及帮扶企业高质量的发展。随着近年来大数据、人工智能等新一代信…

多线程环境下 System.out.println 导致死锁问题分析

背景 一个文件采集系统,使用了多线程递归采集指定目录下的文件,并为每个目录创建一个线程去采集。 这个应用每隔几天就出现罢工情况,查看进程还在,堆内存空间还很充足,就是导出堆栈时,发现几乎所有的采集…

Docker:安装RediSearch全文搜索

1、简述 在本文中,我们将介绍如何使用Docker快速、简便地安装RediSearch,Redis的全文搜索模块。RediSearch提供了高效的全文搜索功能,通过Docker安装,可以轻松地在任何环境中部署和管理RediSearch。 官网地址:https:/…

欧洲杯数据控@20240621

点击标题下「蓝色微信名」可快速关注 西班牙成为第二支晋级淘汰赛的球队。 今日积分榜, 今日射手榜, 今日助攻榜, 本届欧洲杯相关文章, 《欧洲杯赛况20240621》 《欧洲杯数据控20240620》 《欧洲杯赛况20240620》 《欧洲杯数据控2…

中霖教育怎么样?中级会计考试大纲哪里能看?

中霖教育怎么样?中级会计考试大纲哪里能看? 在准备中级会计职业资格考试时,考试大纲是至关重要的参考资料。考试大纲能够为考生提供考试覆盖范围和核心考点,从而有助于进行针对性的复习和学习,提高学习的效率。 中级会计考试大纲哪里能看…

大模型项目落地时,该如何估算模型所需GPU算力资源

近期公司有大模型项目落地。在前期沟通时,对于算力估算和采购方案许多小伙伴不太了解,在此对相关的算力估算和选择进行一些总结。 不喜欢过程的可以直接 跳到HF上提供的模型计算器 要估算大模型的所需的显卡算力,首先要了解大模型的参数基础知识。 大模型的规模、参数的理解…

Nature Climate Change | 气候变暖会造成未来全球干旱区面积扩张?

在气候变暖的情况下,旱地通常被预测将在全球范围内扩大,旱地包括以水资源有限、植被稀疏为特征的土地区域。然而,这种预测依赖于旱地的大气代用物,即干旱指数。最近的研究表明,干旱指数对陆地水循环的各种组成部分的预…

Java多线程基础知识-3

ReentrantLock: condition.await()方法之前必须调用lock.lock()代码获取同步监视器。类比: Object类中的wait()相当于Condition类中的await()Object类中wait(long timeout)相当于Condition类中await(long time, TimeUnit unit)方法Object类中notify()相…

看到vue3源码中的__tests__文件中有很多xxx.spec.ts文件,这些文件是干什么的

问: computed.spec.ts这是什么文件 回答: computed.spec.ts 是一个文件命名的示例,通常用于编写和运行针对计算机软件中"computed"模块的测试。在这种情况下,.ts 扩展名表明这是一个 TypeScript 文件,通常用于编写 Angular 或者…

共享购模式的全新解析与收益分析

在当下这个数字化时代,共享购模式以其独特的创新消费理念,为商家和消费者带来了前所未有的增值机会。这一模式不仅整合了商家的资源,还通过一系列机制确保了消费者与商家的共赢。 一、商家参与机制 商家想要加入这一平台,需要支付…

HTML静态网页成品作业(HTML+CSS+JS)——动漫斗罗大陆介绍网页(3个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,使用Javacsript代码实现图片轮播和tab切换,共有3个页面。 …