状态压缩DP——AcWing 291. 蒙德里安的梦想

状态压缩DP

定义

状态压缩DP是一种利用二进制数来表示状态的动态规划算法。它通过将状态压缩成一个整数,从而减少状态数量,提高算法效率。

运用情况

状态压缩DP通常用于解决具有状态转移和最优解性质的问题,例如组合优化、图论、游戏等问题。它的基本思想是将问题的状态表示为一个二进制数,其中每一位表示一个元素或一个状态。通过对二进制数的位运算,可以方便地进行状态转移和最优解的计算。

注意事项

  1. 状态表示的合理性:确保状态表示能够准确地反映问题的特征和约束条件。
  2. 状态转移的正确性:仔细设计状态转移方程,确保状态转移的正确性和有效性。
  3. 边界情况的处理:考虑边界情况,如初始状态、终止状态等,进行特殊处理。
  4. 空间复杂度的控制:由于状态数量可能很大,需要注意控制空间复杂度,避免内存溢出。
  5. 位运算的优化:合理使用位运算,提高算法的效率。

解题思路

  1. 状态表示:将问题的状态用二进制数表示,每个二进制位表示一个元素或状态。
  2. 状态转移:根据问题的规则,设计状态转移方程,通过位运算实现状态的转移。
  3. 初始化:确定初始状态,并进行相应的初始化操作。
  4. 计算最优解:通过递推或迭代的方式,计算每个状态的最优解。
  5. 输出结果:根据问题的要求,输出最终的最优解。

如何处理状态的溢出和下溢

  • 状态压缩:使用二进制数来表示状态,通过位运算来进行状态转移和计算。这种方法可以大大减少状态的数量,提高算法的效率。
  • 判断状态:在进行状态转移和计算时,需要判断当前状态是否合法。如果当前状态不合法,则需要进行特殊处理,例如忽略该状态或者将其标记为已访问。
  • 初始化状态:在进行状态转移和计算时,需要对状态进行初始化。如果状态的初始值设置不合理,则可能会导致状态的溢出或下溢。
  • 边界情况处理:在进行状态转移和计算时,需要考虑边界情况。如果边界情况处理不当,则可能会导致状态的溢出或下溢。

AcWing 291. 蒙德里安的梦想 

题目描述

291. 蒙德里安的梦想 - AcWing题库

运行代码

#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 12, M = 1 << N;
int n, m;
LL f[N][M];
bool st[M];
vector<int> state[M];
int main()
{
    while(cin >> n >> m, n || m)
    {
        for(int i = 0; i < 1 << n; i++)
        {
            int ans = 0;
            bool is = true;
            for(int j = 0; j < n; j++)
            {
                if(i >> j & 1)
                {
                    if(ans & 1){ is = false; break;}
                    ans = 0;
                }
                else ans ++;
            }
            if(ans & 1) is = false;
            st[i] = is;
        }
        for(int i = 0; i < 1 << n; i++)
        {
            state[i].clear();
            for(int j = 0; j < 1 << n; j++)
                if((i & j) == 0 && st[i | j])
                    state[i].push_back(j);
        }
        memset(f, 0, sizeof f);
        f[0][0] = 1;
        for(int i = 1; i <= m; i++)
            for(int j = 0; j < 1 << n; j++)
                for(auto k : state[j])
                    f[i][j] += f[i - 1][k];
        cout << f[m][0] << endl;
    }
    return 0;
}

代码思路

  1. 输入处理:首先,程序通过 cin >> n >> m 获取两个整数,其中 n 表示问题规模(通常是与二进制位数相关),m 是一个操作次数或阶段数。当 n 或 m 不为零时,继续执行。
  2. 初始化状态:接下来,程序遍历所有 1 << n(即 2^n2n)种二进制状态(用整数表示),检查每个状态是否满足特定条件。这里的条件是:对于一个状态(二进制数),如果从左到右连续的0后面紧接着是1,则认为该状态无效(标记为 false,存储在数组 st[] 中),否则为有效(标记为 true)。这是通过累计0的个数并在遇到1时检查累计值的奇偶性来判断的。
  3. 构建状态转移图:然后,程序构建一个“状态转移图”。对于每一个状态 i,找到所有与 i 按位或 (|) 后仍能保持有效的状态 j,并将这些状态添加到 state[i] 这个向量中。这一步实际上是为动态规划准备状态转移的基础,确保从一个有效状态通过某个操作可以转移到另一个有效状态。
  4. 动态规划计算:初始化动态规划数组 f[][],其中 f[i][j] 表示进行了 i 次操作后到达状态 j 的方案数。初始时,只有一种方法不进行任何操作到达初始状态(全0状态),即 f[0][0] = 1。
  5. 遍历 m 次操作,对于每一次操作,以及当前可达的所有状态 j,考虑从所有能转移到 j 的前驱状态 k(存储在 state[j] 中)经过一次操作到达 j 的方案数,并累加到 f[i][j] 上。
  6. 输出结果:最后,输出进行了 m 次操作后到达初始状态(全0状态)的方案数,即 f[m][0]。
  7. 总结:这段代码的核心思想是使用动态规划和位操作来解决一个组合计数问题,特别是在有限状态空间内寻找满足特定转移规则的路径数量。通过构建状态转移关系并迭代计算,高效地得到了问题的解。

改进思路

  1. 减少状态空间大小:如果题目条件允许,可以尝试减少需要枚举的状态数量。不过,从当前代码逻辑看,似乎已经利用了问题的特性(通过位运算处理状态转移),直接减小状态空间较为困难。

  2. 内存优化:由于 f[][]st[] 数组的大小与 n 直接相关,且随着 n 增大非常快,可以考虑使用滚动数组或者空间压缩技巧来减少内存使用。对于 f[][],实际上每一阶段只需要上一阶段的状态,因此可以使用一维数组滚动更新。

  3. 避免重复计算:当前代码在计算状态转移时,对于每个状态 j,都会遍历其所有可能的前驱状态并累加方案数。如果存在大量重复计算的情况,可以考虑使用记忆化搜索或更高效的数据结构来存储中间结果。

  4. 代码可读性和维护性:增加注释,对关键变量和步骤进行解释,使代码更易于理解和维护。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/732180.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python-邮票组合问题

[题目描述] 某人有四张3分的邮票和三张5分的邮票&#xff0c;用这些邮票中的一张或若干张可以得到多少种不同的邮资&#xff1f;输入格式&#xff1a; 此题无输入。输出格式&#xff1a; 输出可以得到不同邮资的数量。 样例输入 无样例输出 19数据范围&#xff1a; 对于100%的…

华为---RIP路由协议的汇总

8.3 RIP路由协议的汇总 8.3.1 原理概述 当网络中路由器的路由条目非常多时&#xff0c;可以通过路由汇总(又称路由汇聚或路由聚合)来减少路由条目数&#xff0c;加快路由收敛时间和增强网络稳定性。路由汇总的原理是&#xff0c;同一个自然网段内的不同子网的路由在向外(其他…

与Vatee万腾平台同行,共创智能未来

在科技日新月异的今天&#xff0c;智能化已成为推动社会进步的重要力量。Vatee万腾平台&#xff0c;作为这一浪潮中的佼佼者&#xff0c;正以其独特的创新力和前瞻的视野&#xff0c;引领我们迈向智能未来。与Vatee万腾平台同行&#xff0c;我们不仅能享受到科技带来的便捷与舒…

[最新教程]Claude Sonnet 3.5注册方法详细步骤分享,新手小白收藏,文末免费送已注册的Claude账号

一.Claude sonnet 3.5大模型面世 6月21日&#xff0c;被称为“OpenAI 最强竞对”的大模型公司 Anthropic 发布了 Claude 3.5 系列模型中的第一个版本——Claude 3.5 Sonnet。 Anthropic 在官方博客中表示&#xff0c;Claude 3.5 Sonnet 提高了智能化的行业标准&#xff0c;在…

传统图像特征描述及提取方法

目录 一、图像特征描述 二、图像特征的分类 2.1 图像的点、线、面特征 2.2 图像的纹理形状特征 2.3 图像颜色特征 2.4图像的统计特征 三、图像特征提取的评价 一、图像特征描述 图像特征是一幅图像区别于另一幅图像最基本的特征,是其可以作为标志性的属性。 图像特征分为…

2024 年解锁 Android 手机的 7 种简便方法

您是否忘记了 Android 手机的 Android 锁屏密码&#xff0c;并且您的手机已被锁定&#xff1f;您需要使用锁屏解锁 Android 手机&#xff1f;别担心&#xff0c;您不是唯一一个忘记密码的人。我将向您展示如何解锁 Android 手机的锁屏。 密码 PIN 可保护您的 Android 手机和 G…

高考志愿填报,如何权衡学校和专业?

高考是人生的分水岭&#xff0c;成绩好的学生能就读更好的大学&#xff0c;获得更多的学习资源&#xff0c;但也有一些同学即使凭借高分数进入了高校&#xff0c;专业的学习过程却不尽如人意&#xff0c;他们也没有将100%的精力投入到专业学习当中。 无论高考结束之后获得了多…

python--fasApi学习(Dash+FastAPI框架)

在学习fastApi 框架时&#xff0c;发现了一个好用的框架&#xff0c;参考&#xff1a; 博客参考&#xff1a; https://blog.csdn.net/gitblog_00002/article/details/137331157下载文档并部署&#xff1a; 下载代码&#xff1a; git clone https://gitee.com/insistence2022/…

LeetCode 1-两数之和

LeetCode第1题 两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能重复出现…

全流程FVCOM水环境、污染物迁移、水交换、水质、潮流、温盐、波浪及泥沙数值模拟

近年来&#xff0c;随着计算技术的发展和对海洋、水环境问题认识的加深&#xff0c;数值模拟技术在海洋、水环境等科学研究中的应用越来越广泛。FVCOM因其独特的优点&#xff0c;成为研究海洋动力过程、污染物扩散、水质变化等问题的重要工具。作为一种基于有限体积法的数值模型…

DBeaver 数据结果集设置不显示逗号(太丑了)

从Navicat切换过来使用DBeaver&#xff0c;发现类似bigint 这种数据类型在结果集窗口中显示总是给我加上一个逗号&#xff0c;看着很不习惯&#xff0c;也比较占空间&#xff0c;个人觉得这种可读性也不好。 于是我在网上尝试搜索设置方法&#xff0c;可能我的关键词没命中&…

利用LabVIEW和机器学习实现无规律物体识别

针对变化无规律的物体识别&#xff0c;LabVIEW结合机器学习算法提供了一种高效的解决方案。介绍如何使用LabVIEW编程实现此功能&#xff0c;包括所需工具包、算法选择和实现步骤&#xff0c;帮助开发者在无规律的复杂环境中实现高精度的物体识别。 1. 项目概述 无规律物体的识…

【D3.js in Action 3 精译】关于本书

文章目录 本书读者本书结构与路线图本书代码liveBook 在线论坛 D3.js 项目的传统开发步骤 本书读者 这本书适用于所有渴望在数据可视化工作中获得完全创意自由的人&#xff0c;从定制化的经典图表到创建独特的数据可视化布局&#xff0c;涵盖内容广泛&#xff0c;应有尽有。您…

centos中安装并设置vsftpd

vsftpd是一个可安装在linux上的ftp服务器软件。 一、安装 安装前保证服务器能上互联网。如果不能上网&#xff0c;看看能不能设法利用局域网代理上网。 sudo yum -y install vsftpd二、配置 1、修改配置文件 cd /etc/vsftpd #修改之前记得备份&#xff01;&#xff01;&am…

Elasticsearch中的post_filter后置过滤器技术

Hi~&#xff01;这里是奋斗的小羊&#xff0c;很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~~ &#x1f4a5;&#x1f4a5;个人主页&#xff1a;奋斗的小羊 &#x1f4a5;&#x1f4a5;所属专栏&#xff1a;C语言 &#x1f680;本系列文章为个人学习…

「iOS」UI——无限轮播图实现与UIPageControl运用

「OC」UI 文章目录 「OC」UI无限轮播图的实现以及UIPageControl的实际运用明确要求简单滚动视图的实现UIPageControl的实现设置NSTimer实现自动移动补充实现 进行无限滚动视图的修改思路实现 完整代码展示 无限轮播图的实现以及UIPageControl的实际运用 明确要求 我们要实现一…

计算机组成原理笔记-第1章 计算机系统概论

第一章 计算机系统概论 笔记PDF版本已上传至Github个人仓库&#xff1a;CourseNotes&#xff0c;欢迎fork和star&#xff0c;拥抱开源&#xff0c;一起完善。 1.1 计算机系统简介 计算机系统组成&#xff1a; 硬件&#xff1a;计算机的实体&#xff0c;如主机、外设等软件&am…

ffmpeg windows系统详细教程

视频做预览时黑屏&#xff0c;但有声音问题解决方案。 需要将 .mp4编成H.264格式的.mp4 一般上传视频的站点&#xff0c;如YouTube、Vimeo 等&#xff0c;通常会在用户上传视频时自动对视频进行转码&#xff0c;以确保视频能够在各种设备和网络条件下流畅播放。这些网站通常…

媒体邀约有啥要注意的

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 媒体宣传加速季&#xff0c;100万补贴享不停&#xff0c;一手媒体资源&#xff0c;全国100城线下落地执行。详情请联系胡老师。 媒体邀约是邀请媒体参与活动或报道的重要过程&#xff0c…

【国际化I18n使用方法】vue2使用i18简单实现多语种切换,刷新保持,动态数据处理

效果图 使用流程 总结就是&#xff0c;安装好插件后&#xff0c;配置几个语言的js文件&#xff0c;每个词都要在每个js内写一遍对应的语言&#xff0c;然后通过切换js文件拿到对应的语言&#xff0c;实现翻译的效果。然后当前使用什么语言保存到本地&#xff0c;这样刷新就可以…