【对抗去偏】BiasAdv: Bias-Adversarial Augmentation for Model Debiasing

原文标题: BiasAdv: Bias-Adversarial Augmentation for Model Debiasing
原文代码: 暂无
发布年度: 2023
发布期刊: CVPR


摘要

Neural networks are often prone to bias toward spurious correlations inherent in a dataset, thus failing to generalize unbiased test criteria. A key challenge to resolving the issue is the significant lack of bias-conflicting training data (i.e., samples without spurious correlations). In this paper, we propose a novel data augmentation approach termed BiasAdversarial augmentation (BiasAdv) that supplements biasconflicting samples with adversarial images. Our key idea is that an adversarial attack on a biased model that makes decisions based on spurious correlations may generate synthetic bias-conflicting samples, which can then be used as augmented training data for learning a debiased model. Specifically, we formulate an optimization problem for generating adversarial images that attack the predictions of an auxiliary biased model without ruining the predictions of the desired debiased model. Despite its simplicity, we find that BiasAdv can generate surprisingly useful synthetic bias-conflicting samples, allowing the debiased model to learn generalizable representations. Furthermore, BiasAdv does not require any bias annotations or prior knowledge of the bias type, which enables its broad applicability to existing debiasing methods to improve their performances. Our extensive experimental results demonstrate the superiority of BiasAdv, achieving state-of-the-art performance on four popular benchmark datasets across various bias domains.


背景

现实世界的数据集通常本质上是有偏差的,其中某些视觉属性与类标签虚假相关。例如,如图 1 所示,考虑猫和狗之间的二元分类任务,但是数据集由大多数室内的猫和大多数室外的狗组成。当在这样一个有偏差的数据集上进行训练时,神经网络经常学习意想不到的捷径(例如,基于背景的预测)并且无法在新的无偏见测试环境中进行概括。

为了解决这个问题,传统方法利用了详细偏差注释或偏差类型的先验知识。然而,偏差注释的获取成本高昂且费力,并且提前假设某些偏差类型限制了普遍适用于各种偏差类型的能力。为了训练没有偏差注释的去偏差模型,最近研究的通常利用故意偏差模型作为辅助模型,因为偏差属性易于学习。本质上,这些方法基于辅助模型识别偏差冲突样本,并以更关注识别样本的方式训练去偏差模型(即基于辅助模型重新加权)。尽管最近的重新加权方法在没有偏差注释的去偏差方面取得了显着的成功,但它们具有固有的局限性;由于偏差冲突样本的数量通常太小,模型无法学习可概括的表示,因此模型很容易过度拟合。因此,重新加权方法会受到偏差引导样本性能下降的影响,这就提出了一个问题:这些方法是否真正使模型去偏差,或者只是使模型偏向非预期的方向。

为了解决上述问题,最近提出了数据增强方法来补充偏差冲突的样本。例如,BiaSwap进行图像到图像的翻译来合成偏差冲突的样本。然而,它需要对复杂且昂贵的图像翻译模型进行精细训练,限制了其适用性。另一方面,DFA 利用基于偏差引导和偏差冲突特征之间的解开表示的特征级交换。然而,在现实世界的数据集上学习解开的表示通常具有挑战性。

创新点

在本文中,我们设计了一种更简单但更有效的方法来生成偏差冲突样本,创造了偏差对抗增强(BiasAdv)。图 1 显示了 BiasAdv 的概述。我们利用一个辅助模型来有意学习有偏差的捷径。 BiasAdv 的关键思想是,对有偏差的辅助模型的对抗性攻击可能会生成改变输入图像(即偏差冲突样本)的偏差线索的对抗性图像。具体来说,我们制定了一个优化问题来生成对抗性图像,该图像攻击有偏差的辅助模型的预测,而不破坏所需的去偏差模型的预测。然后,生成的对抗图像用作附加训练数据来训练去偏模型。值得注意的是,与之前的数据增强方法]不同,BiasAdv不需要复杂的图像转换模型或解缠结表示,因此它可以无缝地应用于任何基于偏置模型的去偏置方法。

模型

本文考虑学习一个分类器的任务,该分类器在存在数据集偏差的情况下将输入图像 x ∈ X 分类为 C 类 y ∈ Y 之一。具体来说,我们考虑一个有偏差的训练数据集 D = {(xi, yi)}N i=1,其中图像 x 的某个视觉属性 a ∈ A 与类标签 y 虚假相关,而实际上两者之间没有因果关系。
在这里插入图片描述

原任务目标:
在这里插入图片描述

近年来,重新加权方法得到了广泛的研究。基于偏差属性 a 比其他内在属性更优先被学习的假设,这些方法采用辅助分类模型 gφ : X → Y 由 φ ε Φ 参数化,该模型被有意训练以做出有偏差的决策(即,根据 a) 预测 y。

基于辅助模型gφ,重新加权方法首先识别偏差冲突样本,然后训练模型fθ以强调所识别的偏差冲突样本的方式去偏差。定义如下:
在这里插入图片描述

其中W(x,y;θ,φ)表示(x,y)的样本权重。这种方法会有过拟合导致泛化表达能力下降的问题。

  • Bias-Adversarial Augmentation

给定训练对 (x, y) ∈ D,BiasAdv 的目标是生成对抗性图像 xadv,它可以充当合成偏差冲突样本,用于训练去偏差模型 fθ。我们利用偏置模型 gφ 作为辅助模型。因此,为了确保只有偏差属性受到攻击,我们约束 xadv 不影响去偏差模型 fθ 的类预测。为此,BiasAdv通过解决以下优化问题来生成xadv,
在这里插入图片描述

其中 L 表示交叉熵损失。第一项攻击 gφ 的预测,而第二项保留 fθ 的预测,从而防止内在属性受到对抗性扰动的损害。简而言之,BiasAdv 将原始图像 x 转换为穿过 gφ 的决策边界,同时保留 fθ 的预测。

然后,生成的对抗性示例 xadv 用作学习去偏模型 fθ 的附加训练数据。具体来说,我们使用对抗数据和原始数据的混合来训练 fθ,最小化定义为的 Ra (θ),
在这里插入图片描述

其中 ω x 和 ω adv 分别表示 x 和 x adv 的样本权重。对于 ω x ,我们可以利用方程 1 中现有的重新加权公式 W(x, y; θ, φ)。 (2) 定义 ω x = W(x, y; θ, φ)。也就是说,BiasAdv 可以与任何现有的利用辅助模型的重新加权方法相结合。在这种情况下,我们设计 ω adv 来权衡样本权重 ω x ,如下所示: ω adv = β · (1 − ω x​​ ) 其中 β > 0 表示控制对抗性数据重要性的超参数。

实验

评估指标:对于定量评估,我们采用了三个指标;平均(即所有样本的准确度 (%))、冲突(即偏差冲突样本的准确度 (%))和最差组(即各组之间的最小准确度 (%),其中每个组由类标签定义,并且偏差属性)。

1.主要结果

bias_conflicting样本的比例越高,模型的整体效果就会越好。将本文的方法与目前reweighting的方法进行结合,得到的效果有较大的提升,并且在模型结合后超越了所有的方法,达到了最好的效果。

2.分析

  • BiasAdv 是否会生成偏差冲突的样本?

图 3 显示了 BiasAdv 生成的对抗图像的示例。尽管 BiasAdv 明显改变了 g φ 的预测(即老 → 年轻),同时保留了 fθ 的预测。

为了验证 BiasAdv 从网络角度生成有意义的偏差冲突样本,使用 t-SNE对原始偏差引导样本、原始偏差冲突样本和 BiasAdv 生成的样本的倒数第二个特征进行可视化和比较。偏见引导样本和偏见冲突样本彼此分开分布。值得注意的是,BiasAdv 生成的样本与偏差冲突的样本重叠。这一观察结果表明,BiasAdv 的这些合成对抗性图像确实可以作为训练去偏模型的偏差冲突样本,即使对抗性扰动很少在人类水平上被识别。

  • 偏差引导样本的性能。

一个良好泛化的模型应该适用于偏差引导样本和偏差冲突样本。因此,我们证明了 BiasAdv 在维持偏差引导样本性能方面的有效性。

在图 5 中,在对于LfF 的情况下,偏差引导样本的性能随着训练的进行而下降,这意味着 LfF 过度拟合了数量不足的偏差冲突样本。另一方面,应用 BiasAdv 保持了良好的偏差引导性能,并在训练结束时实现了显着更高的偏差引导精度。这些结果支持 BiasAdv 有助于学习可泛化表示并减少过度拟合。

  • 消融实验

噪声添加:随机模型通过添加随机噪声而不是 BiasAdv 来增强数据。 AdvProp 模型使用对抗性图像来攻击去偏模型而不是辅助模型。最后验证式(3)中BiasAdv的正则化项λ·L(̃x,y;θ)的效果,将λ设置为0。

添加随机噪声会带来轻微的性能提升,但前景并不乐观。然而,AdvProp 添加了攻击去偏模型的对抗性噪声,严重降低了性能。相比之下,仅攻击辅助模型的 BiasAdv (λ = 0) 产生了显着的性能改进。这一观察结果表明,攻击有偏见的辅助模型对于使我们的方法发挥作用至关重要。也就是说,BiasAdv 带来的性能改进归因于合成偏差冲突样本的生成(如图 4 中所述),而不是对抗性图像的正则化能力。最后,使用等式(3)中的正则化项有助于有希望的性能改进。正则化项可防止内在属性受到对抗性扰动的损害,并提高生成样本的质量,从而提供额外的性能增益。

  • Grad-CAM 的可视化

在图 6 中,我们显示了用于预测年龄的类激活图。值得注意的是,ERM 和 LfF 突出显示了胡须,这与性别(即男性)密切相关,这意味着这些模型是根据偏差属性做出决策的。仅攻击有偏差的辅助模型 g φ(即 λ = 0)会促使模型关注偏差属性以外的区域,但通常是完全错误的区域,例如背景。通过提出的正则化约束来维持去偏模型 f θ 的预测分数,BiasAdv 有助于更好的语义聚焦,关注年龄预测的判别区域,但与性别无关,例如前额。这些观察结果表明,我们的 BiasAdv 引导去偏模型捕获目标类的内在属性,支持第 4.2 节中提出的无偏测试标准的卓越泛化性能。

  • 模型的稳健性。

在表 6 中,我们比较了 ERM、LfF 和 LfF + BiasAdv 的结果。尽管输入图像变化很小,但 ERM 和 LFF 的性能却严重下降。相比之下,应用 BiasAdv 显着提高了模型的稳健性,无论损坏类型如何,都能实现稳健且卓越的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/730555.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【代码仓库提交大文件,用Git LFS!】

开始前 Git LFS:请注意,你的远程仓库需要支持Git LFS。GitHub、GitLab和Bitbucket都支持Git LFS,但可能需要额外的配置或开启特定的支持选项。 介绍 Git LFS (Large File Storage) 是一个 Git 扩展,用于处理和存储大文件。通常…

vivado WIRE

WIRE是用于在Xilinx部件上路由连接或网络的设备对象。一根电线 是单个瓦片内部的一条互连金属。PIP、系紧装置和 SITE_PINs。 提示:WIRE对象不应与设计的Verilog文件中的WIRE实体混淆。那些 电线在设计中与网络有关,而不是与定义的设备的路由资源有关 WI…

美创科技入选“2024年度浙江省工业信息安全服务支撑单位”

近日,浙江省经济和信息化厅公布“2024年度浙江省工业信息安全服务支撑单位”名单。 经单位自愿申报、各市经信主管部门初审推荐、专家评审等环节,凭借在工业数据安全领域长期深耕和产品服务实力,美创科技成功入选! “2024年度浙江…

深度学习之绘图基础

文章目录 1.实验目的2. 需求3.代码结果图片 1.实验目的 熟练绘制各种图像,为深度学习打基础 2. 需求 给定一个函数,需要你画出原图像以及这个函数在某点切线图像 3.代码 # File: python绘制函数图像以及倒数图像.py # Author: chen_song # Time: 20…

Homebrew使用

官网:https://brew.sh/ 安装: 简介:https://www.jianshu.com/p/f4c9cf0733ea 比如,安装maven: 1、brew install maven 2、查看安装路径:brew list maven 具体参考:https://blog.csdn.net/m0_67402970/arti…

Excel条件格式的经典用法

目录: 一、自动设置填充颜色 二、设置Excel到期自动销毁 三、隔行自动标记 四、美化表格 五、快速突出显示重复值 六、标记空单元格 七、突出显示前N名单元格数值 八、表格添加新内容自动加边框 一、自动设置填充颜色 1、选择内容 首先我们选中表格的数据…

机器学习(V)--无监督学习(六)流形学习

title: 机器学习(V)–无监督学习(二)流形学习 date: katex: true categories: Artificial IntelligenceMachine Learning tags:机器学习 cover: /img/ML-unsupervised-learning.png top_img: /img/artificial-intelligence.jpg abbrlink: 26cd5aa6 description: 流形学习 【降…

支付宝推出NFC(近场通信)碰一碰支付功能

近日,支付宝推出NFC(近场通信)碰一碰支付功能,支持iPhone、安卓手机。NFC支付早已不是新事物,从二维码支付重回NFC支付,支付宝能撬动市场吗? 根据网友反馈,目前支付宝正在上海静安大…

媒体访谈 | 广告变现痛点有新解,俄罗斯市场成大热门?

今年一季度,中国自主研发游戏在海外市场实际销售收入达到了40.75亿美元,环比和同比均实现了超过5%的增长,出海,仍是游戏产品近些年来最主要的发展模式之一。 当今的市场环境正经历一系列深刻变革,移动游戏广告市场呈现…

超GPT-4o,代码能力超强!Claude 3.5 Sonnet正式发布

6月20日晚,著名大模型平台Anthropic在官网正式发布了Claude 3.5 Sonnet。 据悉,这是Sonnet 是Claude 3.5系列中第一个,也是Anthropic目前最强的视觉模型。随后会发布Haiku和Opus版本。 其性能超过了上一代Claude 3旗舰模型Opus,…

HarmonyOS父子组件传递参数

HarmonyOS父子组件传递参数 1. 使用State和Prop进行父子组件传递———注意是单向同步 Prop装饰器:父子单向同步 注意:只支持单向同步,同时也只能支持string\number\boolean\enum比较简单的类型。 代码 // 使用 props 进行父子组件传值…

【QCustomPlot实战系列】QCPGraph堆叠面积图

在【QCustomPlot实战系列】QCPGraph堆叠图的基础上,使用setChannelFillGraph函数即可 static QCPScatterStyle GetScatterStyle(const QColor& color) {QPen pen(color, 2);return QCPScatterStyle(QCPScatterStyle::ssCircle,pen,Qt::white, 5); }static QCP…

6.21 移动语义与智能指针

//先构造,再拷贝构造//利用"hello"这个字符串创建了一个临时对象//并复制给了s3//这一步实际上new了两次String s3 "hello"; 背景需求: 这个隐式创建的字符串出了该行就直接销毁掉,效率比较低 可以让_pstr指向这个空间…

Java面试题:mysql执行速度慢的原因和优化

Sql语句执行速度慢 原因 聚合查询 多表查询 表数据量过大查询 深度分页查询 分析 sql的执行计划 可以使用EXPLAIN或者DESC获取Mysql如何执行SELECT语句的信息 直接在select语句前加关键字explain/desc 得到一个执行信息表 信息字段分析 possible_keys:可能使用到的索…

5G如何推动工业数字化转型?

据中国信息通信研究院测算,5G商用五年来,直接带动经济总产出约5.6万亿元,间接带动总产出约14万亿元,有力促进了经济社会高质量发展。而工业数字化转型,作为应对市场变革的关键战略,也借助5G技术卓越的高带宽…

elementui组件库实现电影选座面板demo

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Cinema Seat Selection</title><!-- 引入E…

【Nodejs 日志库 】

总结了几个比较好用的Nodejs日志库&#xff0c;我认为一个 合格的日志库 需要 支持多种传输&#xff0c;如文件、控制台、HTTP 等。可定制的日志级别和格式。异步日志记录。 根据上述的需求&#xff0c;挑选出 几款比较好用的日志库&#xff0c; 1. Winston&#xff08;Gith…

【面试题分享】重现 string.h 库常用的函数

文章目录 【面试题分享】重现 string.h 库常用的函数一、字符串复制1. strcpy&#xff08;复制字符串直到遇到 null 终止符&#xff09;2. strncpy&#xff08;复制固定长度的字符串&#xff09; 二、字符串连接1. strcat&#xff08;将一个字符串连接到另一个字符串的末尾&…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 5G基站光纤连接问题(200分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…

光大证券-放量恰是入市时:成交量择时初探

核心算法 1. 在熊市中&#xff0c;各成交量时序排名出现的频次基本随排名变小而单调增大&#xff1b;在牛市中&#xff0c;各成交量时序排名出现的频次基本随排名变小而单调减少&#xff1b;而在震荡市中&#xff0c;各成交量时序排名出现的频次两头大&#xff0c;中间小&…