聊一聊 Monitor.Wait 和 Pluse 的底层玩法

一:背景

1. 讲故事

在dump分析的过程中经常会看到很多线程卡在Monitor.Wait方法上,曾经也有不少人问我为什么用 !syncblk 看不到 Monitor.Wait 上的锁信息,刚好昨天有时间我就来研究一下。

二:Monitor.Wait 底层怎么玩的

1. 案例演示

为了方便讲述,先上一段演示代码,Worker1 在执行的过程中需要唤醒 Worker2 执行,当 Worker2 执行完毕之后自己再继续执行,参考代码如下:


    internal class Program
    {
        static Person lockObject = new Person();

        static void Main()
        {
            Task.Run(() => { Worker1(); });
            Task.Run(() => { Worker2(); });

            Console.ReadLine();
        }

        static void Worker1()
        {
            lock (lockObject)
            {
                Console.WriteLine($"{DateTime.Now} 1. 执行 worker1 的业务逻辑...");
                Thread.Sleep(1000);

                Console.WriteLine($"{DateTime.Now} 2. 等待 worker2 执行完毕...");
                Monitor.Wait(lockObject);

                Console.WriteLine($"{DateTime.Now} 4. 继续执行 worker1 的业务逻辑...");
            }
        }

        static void Worker2()
        {
            Thread.Sleep(10);
            lock (lockObject)
            {
                Console.WriteLine($"{DateTime.Now} 3. worker2 的逻辑执行完毕...");
                Monitor.Pulse(lockObject);
            }
        }
    }

    public class Person { }

有了代码和输出之后,接下来就是分析底层玩法了。

2. 模型架构图

研究来研究去总得有个结果,千言万语绘成一张图,截图如下:

从图中可以看到这地方会涉及到一个核心的数据结构 WaitEventLink,参考如下:


// Used inside Thread class to chain all events that a thread is waiting for by Object::Wait
struct WaitEventLink {
    SyncBlock         *m_WaitSB;	   // 当前对象的 syncblock
    CLREvent          *m_EventWait;    // 当前线程的 m_EventWait 
    PTR_Thread         m_Thread;       // Owner of this WaitEventLink.
    PTR_WaitEventLink  m_Next;         // Chain to the next waited SyncBlock.
    SLink              m_LinkSB;       // Chain to the next thread waiting on the same SyncBlock.
    DWORD              m_RefCount;     // How many times Object::Wait is called on the same SyncBlock.
};

代码里对每一个字段都做了表述,还是非常清楚的,也看到了这里存在两个队列。

  1. m_Next: 当前线程要串联的 SyncBlock 队列,Node 是 WaitEventLink 结构。
  2. m_LinkSB:当前同步块串联的 Thread 队列,Node 是 m_LinkSB 地址。

3. 底层的源码验证

首先我们看下C#的 Monitor.Wait(lockObject) 底层是如何实现的,它对应着 coreclr 的 ObjectNative::WaitTimeout 方法,核心实现如下:


BOOL SyncBlock::Wait(INT32 timeOut)
{
	//步骤1
    WaitEventLink* walk = pCurThread->WaitEventLinkForSyncBlock(this);

	//步骤2
    CLREvent* hEvent = &(pCurThread->m_EventWait);

    waitEventLink.m_WaitSB = this;
    waitEventLink.m_EventWait = hEvent;
    waitEventLink.m_Thread = pCurThread;
    waitEventLink.m_Next = NULL;
    waitEventLink.m_LinkSB.m_pNext = NULL;
    waitEventLink.m_RefCount = 1;
    pWaitEventLink = &waitEventLink;
    walk->m_Next = pWaitEventLink;

    hEvent->Reset();

	//步骤3
    ThreadQueue::EnqueueThread(pWaitEventLink, this);

    isEnqueued = TRUE;
    PendingSync syncState(walk);

    OBJECTREF obj = m_Monitor.GetOwningObject();

    m_Monitor.IncrementTransientPrecious();

	//步骤4
    syncState.m_EnterCount = LeaveMonitorCompletely();

    isTimedOut = pCurThread->Block(timeOut, &syncState);

    return !isTimedOut;
}

代码逻辑非常简单,大概步骤如下:

  1. 从当前线程的 m_WaitEventLink 所指向的队列中寻找 SyncBlock 节点,如果没有就返回尾部节点。
  2. 将当前节点拼接到尾部。
  3. 新节点通过 EnqueueThread 方法送入到 m_LinkSB 所指向的队列,这里有一个小技巧,它只存放 WaitEventLink->m_LinkSB 地址,后续会通过 -0x20 来反推 WaitEventLink 结构首地址,从而来获取线程等待事件,参考代码如下:

inline PTR_WaitEventLink ThreadQueue::WaitEventLinkForLink(PTR_SLink pLink)
{
    LIMITED_METHOD_CONTRACT;
    SUPPORTS_DAC;
    return (PTR_WaitEventLink) (((PTR_BYTE) pLink) - offsetof(WaitEventLink, m_LinkSB));
}

  1. 使用 LeaveMonitorCompletely 方法将 AwareLock 锁给释放掉,从而让等待这个 lock 的线程进入方法,即当前的 Worker2,简化后代码如下:

LONG LeaveMonitorCompletely()
{
    return m_Monitor.LeaveCompletely();
}

void Signal()
{
    m_SemEvent.SetMonitorEvent();
}

void CLREventBase::SetMonitorEvent(){
    Set();
}

总而言之,Monitor.Wait 主要还是用来将Node追加到两大队列,接下来研究下 Monitor.Pulse 的内部实现,这个就比较简单了,无非就是在 m_LinkSB 指向的队列中提取一个Node而已,核心代码如下:


void SyncBlock::Pulse()
{
    WaitEventLink* pWaitEventLink;

    if ((pWaitEventLink = ThreadQueue::DequeueThread(this)) != NULL)
        pWaitEventLink->m_EventWait->Set();
}

// Unlink the head of the Q.  We are always in the SyncBlock's critical
// section.
/* static */
inline WaitEventLink *ThreadQueue::DequeueThread(SyncBlock *psb)
{
    WaitEventLink* ret = NULL;
    SLink* pLink = psb->m_Link.m_pNext;

    if (pLink)
    {
        psb->m_Link.m_pNext = pLink->m_pNext;
        ret = WaitEventLinkForLink(pLink);
    }
    return ret;
}

inline PTR_WaitEventLink ThreadQueue::WaitEventLinkForLink(PTR_SLink pLink)
{
    return (PTR_WaitEventLink)(((PTR_BYTE)pLink) - offsetof(WaitEventLink, m_LinkSB));
}

class SyncBlock
{
  protected:
    SLink m_Link;
}

上面的代码逻辑还是非常清楚的,从 SyncBlock.m_Link 所串联的 WaitEventLink 队列中提取第一个节点,但这个节点保存的是 WaitEventLink.m_LinkSB 地址,所以需要反向 -0x20 取到 WaitEventLink 首地址,可以用 windbg 来验证一下。


0:017> dt coreclr!WaitEventLink
   +0x000 m_WaitSB         : Ptr64 SyncBlock
   +0x008 m_EventWait      : Ptr64 CLREvent
   +0x010 m_Thread         : Ptr64 Thread
   +0x018 m_Next           : Ptr64 WaitEventLink
   +0x020 m_LinkSB         : SLink
   +0x028 m_RefCount       : Uint4B

取到首地址之后就就可以将当前线程的 m_EventWait 唤醒,这就是为什么调用 Monitor.Pulse(lockObject); 之后另一个线程唤醒的内部逻辑,有些朋友好奇那 Monitor.PulseAll 是不是会把这个队列中的所有 Node 上的 m_EventWait 都唤醒呢?哈哈,真聪明,源码如下:


void SyncBlock::PulseAll()
{
    WaitEventLink* pWaitEventLink;

    while ((pWaitEventLink = ThreadQueue::DequeueThread(this)) != NULL)
        pWaitEventLink->m_EventWait->Set();
}

眼尖的朋友会有一个疑问,这个队列数据提取了,那另一个队列的数据是不是也要相应的改动,这个确实,它的逻辑是在Wait方法的 PendingSync syncState(walk); 析构函数里,感兴趣的朋友可以看一下内部的void Restore(BOOL bRemoveFromSB) 方法即可。

三:总结

花了半天研究这东西还是挺有意思的,重点还是要理解下那张图,理解了之后我相信你对 Monitor.Pluse 方法注释中所指的 waiting queue 会有一个新的体会。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/726953.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【启明智显产品分享】Model3工业级HMI芯片详解系列专题(三):安全、稳定、高防护

芯片作为电子设备的核心部件,,根据不同的应用领域被分为不同等级。工业级芯片适用于工业自动化、控制系统和仪器仪表等领域,对芯片的安全、稳定、防护能力等等有着较高的要求。这些芯片往往需要具备更宽的工业温度范围,能够在更恶…

阿里云服务器提醒漏洞要不要打补丁?

我们自己用的电脑一旦发现漏洞,往往是第一时间进行打补丁重启等等,但是作为服务器而言,往往没有这个习惯,为什么?因为害怕服务器打补丁以后,重启后出现打不开的情况,毕竟稳定的运行似乎在这种情…

最新版Cisco Packet Tracer思科模拟器Windows版本64位下载

Cisco Packet Tracer是思科公司推出的一款网络仿真工具,主要用于网络教学、培训和实验。它提供了一个真实的网络环境模拟平台,让用户可以设计、构建和调试网络,以及进行实时互动,从而帮助用户理解和实践网络技术。 通过 Cisco Pa…

稳定运行 极限生存│美创韧性运行安全体系正式发布

在全面数字化的今天,时刻运转的业务、实时流转的数据,已成为组织生产经营不可或缺的基石。然而,云化、国产化深入推进,数据快速增长,数据库、应用、中间件等信息化资产日益散杂多乱,给组织的运行安全带来更…

【docker】adoptopenjdk/openjdk8-openj9:alpine-slim了解

adoptopenjdk/openjdk8-openj9:alpine-slim 是一个 Docker 镜像的标签,它指的是一个特定的软件包,用于在容器化环境中运行 Java 应用程序。 镜像相关的网站和资源: AdoptOpenJDK 官方网站 - AdoptOpenJDK 这是 AdoptOpenJDK 项目的官方网站&…

UV胶带和UV胶水的应用场景有哪些不同吗?

UV胶带和UV胶水的应用场景有哪些不同吗? UV胶带和UV胶水的应用场景确实存在不同之处,以下是详细的比较和归纳: 一:按使用场景来看: UV胶带的应用场景: 包装行业:UV胶带在包装行业中常用于食品包装、药…

AMD vs NVIDIA:渲染领域的显卡之争

在数字创意与设计的世界里,显卡作为图形处理的核心,其性能与兼容性直接关系到创作者的工作效率与作品质量。AMD与NVIDIA,作为两大显卡巨头,各自在渲染领域拥有独特的技术与优势。那么,针对渲染而言,哪种显卡…

springboot vue 开源 会员收银系统 (7) 收银台的完善 新增开卡 结算

前言 完整版演示 开发版演示 在前面的开发中,我们成功完成了商品分类和商品信息的搭建,开发了收银台基础。现在,我们将进一步完善收银台的功能,添加开卡和结算功能,并在后台实现会员卡的创建和订单保存。同时&#xff…

2024-06月 | 维信金科 | 风控数据岗位推荐,高收入岗位来袭!

今日推荐岗位:策略分析经理/分析专家、贷前、中策略分析、风控模型分析。 风控部门是金融业务的核心部门,而从事风控行业的人即称之为风险管理者。是大脑,是最最最重要的部门之一。今日推荐岗位的核心技能分布如下: 简历发送方式…

一名女DBA的感谢信,到底发生了什么?

昨日我们收到这样一通来电 “早上九点刚上班便收到业务投诉电话,系统卡顿,接口失败率大增,怀疑数据库问题。打开运维平台发现是国产库,生无可恋,第一次生产环境遇到国产库性能问题,没什么排查经验&#xf…

Jetpack Compose 中的嵌套 LazyColumn

Jetpack Compose 中的嵌套 LazyColumn 在展示一组元素时,我们通常会使用 Column 和 Row。然而,当涉及到长列表的显示时,我们使用 LazyColumn、LazyRow 或 LazyGrids,这些组件仅渲染屏幕上可见的项目,从而提高性能并减…

MYSQL 四、mysql进阶 4(索引的数据结构)

一、为什么使用索引 以及 索引的优缺点 1.为什么使用索引 索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教科书的目录部分,通过目录中找到对应文章的页码,便可快速定位到需要的文章。Mysql中也是一样的道理,进行数…

DY-110DP低电压继电器 25-124V 嵌入式安装 约瑟JOSEF

系列型号 DY-110电压继电器;GY-110电压继电器; GDY-110电压继电器;DY-110/AC电压继电器; GY-110/AC电压继电器;GDY-110/AC电压继电器; DL-110电压继电器;GL-110电压继电器; DL-…

汇编程序入门指南

什么是机器语言? 机器语言就是由二进制数字构成的程序,CPU 可以直接对其解释、执行。 汇编语言、C 语言、Java、BASIC 等编程语言编写的程序,也都需要先转换成机器语言才能被执行。机器语言有时也叫作“原生代码”(Native Code&…

6V升12V2.5A芯片 升压恒压IC 惠海H6392 低功耗,高效率,高性价比

H6392是一款适用于2.6-5V输入电压范围的升压DC-DC转换器,具有多种优点,如高效率、低功耗、高精度和高性价比。 这款芯片具有多个显著特点,包括输出可调至12V、可调过电流保护范围为1.2~2.5A、内置18V耐压MOS等。其低待机功耗小于0.1uA&#x…

一种稀疏贝叶斯学习的旋转机械故障诊断方法(MATLAB)

轴承的故障诊断技术是通过检测轴承故障特征信息来判断轴承的具体故障为位置或损伤程度。在轴承发生损坏时,故障特征信息会随着工作时间的增长变得明显。轴承的损坏过程可以分为四个阶段。第一个阶段为损伤初始阶段,轴承故障特征信号一般无法测量。第二个…

redis-基础篇(1)

黑马redis-基础篇笔记 1. 初识redis REmote DIctionary Server(Redis) 是一个由 Salvatore Sanfilippo 写的 key-value 存储系统,是跨平台的非关系型数据库。Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的…

Vue3 【仿 react 的 hook】封装 useTitle

效果预览 页码加载时&#xff0c;自动获取网页标题通过input输入框&#xff0c;可以实时改变网页标题 代码实现 index.vue <template><h1>网页的标题为&#xff1a; {{ titleRef }}</h1><p>通过input输入框实时改变网页的标题 <input v-model"…

一个软件是如何开发出来的呢?

一、前言 如今&#xff0c;AI大爆发的时代&#xff0c;作为一名IT从业者&#xff0c;你是否也想尝试开发一套自己的系统&#xff0c;实现那些看似有可能实现的天马行空的想法&#xff0c;变成一个优秀甚至伟大的产品&#xff0c;甚至带来某个行业的革新&#xff0c;那作为一名…

【保姆级教程】Linux 基于 Docker 部署 MySQL 和 Nacos 并配置两者连接

一、Linux 部署 Docker 1.1 卸载旧版本&#xff08;如有&#xff09; sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine1.2 安装 yum-utils 包 sudo yum install -y…