【大数据】Flink 详解(二):核心篇 Ⅱ

Flink 详解(二):核心篇 Ⅱ

22、刚才提到 State,那你简单说一下什么是 State。

在这里插入图片描述
在 Flink 中,状态 被称作 state,是用来保存中间的计算结果或者缓存数据。根据状态是否需要保存中间结果,分为 无状态计算有状态计算

  • 对于流计算而言,事件持续产生,如果每次计算相互独立,不依赖上下游的事件,则相同输入,可以得到相同输出,是无状态计算。
  • 如果计算需要依赖于之前或者后续事件,则被称为有状态计算。

在这里插入图片描述
有状态计算如 sum 求和,数据累加等。

在这里插入图片描述

23、Flink 状态包括哪些?

(1) 按照由 用户管理 还是 Flink 管理,状态可以分为 原始状态托管状态

  • 原始状态Raw State):由用户自行进行管理。
  • 托管状态Managed State):由 Flink 自行进行管理的 State。

两者区别

  • 状态管理方式 来说,Managed State 由 Flink Runtime 管理,自动存储,自动恢复,在内存管理上有优化;而 Raw State 需要用户自己管理,需要自己序列化,Flink 不知道 State 中存入的数据是什么结构,只有用户自己知道,需要最终序列化为可存储的数据结构。
  • 状态数据结构 来说,Managed State 支持已知的数据结构,如 ValueListMap 等。而 Raw State 只支持字节数组,所有状态都要转换为二进制字节数组才可以。
  • 推荐使用场景 来说,Managed State 大多数情况下均可使用,而 Raw State 是当 Managed State 不够用时,比如需要自定义 Operator 时,才会使用 Raw State。在实际生产过程中,只推荐使用 Managed State。

(2)State 按照 是否有 key 划分为 KeyedStateOperatorState 两种。

KeyedState 特点

  • 只能用在 KeyedStream 上的算子中,状态跟特定的 key 绑定。
  • KeyedStream 流上的每一个 key 对应一个 state 对象。若一个 operator 实例处理多个 key,访问相应的多个 state,可对应多个 state。
  • KeyedState 保存在 StateBackend 中。
  • 通过 RuntimeContext 访问,实现 Rich Function 接口。
  • 支持多种数据结构:ValueState、ListState、ReducingState、AggregatingState、MapState。

在这里插入图片描述
OperatorState 特点

  • 可以用于所有算子,但整个算子只对应一个 state。
  • 并发改变时有多种重新分配的方式可选:(1)均匀分配(2)合并后每个得到全量。
  • 实现 CheckpointedFunction 或者 ListCheckpointed 接口。
  • 目前只支持 ListState 数据结构。

在这里插入图片描述
这里的 fromElements 会调用 FromElementsFunction 的类,其中就使用了类型为 ListState 的 operator state。

24、Flink 广播状态了解吗?

Flink 中,广播状态叫作 BroadcastState。 在广播状态模式中使用。所谓广播状态模式, 就是来自一个流的数据需要被广播到所有下游任务,在算子本地存储,在处理另一个流的时候依赖于广播的数据。下面以一个示例来说明广播状态模式。

在这里插入图片描述
上图这个示例包含两个流,一个为 Kafka 模型流,该模型是通过机器学习或者深度学习训练得到的模型,将该模型通过广播,发送给下游所有规则算子,规则算子将规则缓存到 Flink 的本地内存中,另一个为 Kafka 数据流,用来接收测试集,该测试集依赖于模型流中的模型,通过模型完成测试集的推理任务。

广播状态必须是 MapState 类型,广播状态模式需要使用 广播函数 进行处理,广播函数提供了处理广播数据流和普通数据流的接口。

25、Flink 状态接口包括哪些?

在 Flink 中使用状态,包含两种状态接口:

  • 状态操作接口:使用状态对象本身存储、写入、更新数据。
  • 状态访问接口:从 StateBackend 获取状态对象本身。

1、状态操作接口

Flink 中的状态操作接口面向两类用户,即 应用开发者Flink 框架本身。 所以 Flink 设计了两套接口。

(1)面向开发者 State 接口

面向开发的 State 接口只提供了对 State 中数据的增删改基本操作接口,用户无法访问状态的其他运行时所需要的信息。接口体系如下图:

在这里插入图片描述
(2)面向内部 State 接口

内部 State 接口是给 Flink 框架使用,提供更多的 State 方法,可以根据需要灵活扩展。除了对 State 中数据的访问之外,还提供内部运行时信息,如 State 中数据的序列化器,命名空间(namespace)、命名空间的序列化器、命名空间合并的接口。内部 State 接口命名方式为 InternalxxxState

2、状态访问接口

有了状态之后,开发者自定义 UDF(UserDefineFunction,用户自定义函数)时,应该如何访问状态?

状态会被保存在 StateBackend 中,但 StateBackend 又包含不同的类型。所以 Flink 中抽象了两个状态访问接口:OperatorStateStoreKeyedStateStore,用户在编写 UDF 时,就无须考虑到底是使用哪种 StateBackend 类型接口。

(1)OperatorStateStore 接口原理

在这里插入图片描述
OperatorState 数据以 Map 形式保存在内存中,并没有使用 RocksDBStateBackendHeapKeyedStateBackend

(2)KeyedStateStore 接口原理

在这里插入图片描述
KeyedStateStore 数据使用 RocksDBStateBackend 或者 HeapKeyedStateBackend 来存储,KeyedStateStore 中创建、获取状态都交给了具体的 StateBackend 来处理,KeyedStateStore 本身更像是一个代理。

26、Flink 状态如何存储?

在 Flink 中,状态存储 被叫做 StateBackend,它具备两种能力:

  • 在计算过程中提供访问 State 能力,开发者在编写业务逻辑中能够使用 StateBackend 的接口读写数据。
  • 能够将 State 持久化到外部存储,提供容错能力。

Flink 状态提供三种存储方式:

  • 内存型MemoryStateBackend,适用于验证、测试、不推荐生产使用。
  • 文件型FSStateBackend,适用于长周期大规模的数据。
  • RocksDB: RocksDBStateBackend,适用于长周期大规模的数据。

上面提到的 StateBackend 是 面向用户 的,在 Flink 内部 3 种 State 的关系如下图:

在这里插入图片描述
在运行时,MemoryStateBackendFSStateBackend 本地的 State 都保存在 TaskManager 的内存中,所以其底层都依赖于 HeapKeyedStateBackendHeapKeyedStateBackend 面向 Flink 引擎内部,使用者无须感知。

1、内存型 StateBackend

MemoryStateBackend,运行时所需的 State 数据全部保存在 TaskManager JVM 堆上内存中,KV 类型的 State、窗口算子的 State 使用 HashTable 来保存数据、触发器等。执行检查点的时候,会把 State 的快照数据保存到 JobManager 进程的内存中

MemoryStateBackend 可以使用异步的方式进行快照(也可以同步,推荐异步),避免阻塞算子处理数据。

基于内存的 StateBackend 在生产环境下不建议使用,可以在本地开发调试测试 。注意点如下 :

  • State 存储在 JobManager 的内存中,受限于 JobManager 的内存大小。
  • 每个 State 默认 5 M B 5MB 5MB,可通过 MemoryStateBackend 构造函数调整。
  • 每个 Stale 不能超过 Akka Frame 大小。

2、文件型 StateBackend

FSStateBackend,运行时所需的 State 数据全部保存在 TaskManager 的内存中执行检查点的时候,会把 State 的快照数据保存到配置的文件系统中

可以是分布式或者本地文件系统,路径如:

  • HDFS路径:“hdfs://namenode:40010/flink/checkpoints
  • 本地路径:“file:///data/flink/checkpoints

FSStateBackend 适用于处理大状态、长窗口、或者大键值状态的有状态处理任务。注意点如下 :

  • State 数据首先被存在 TaskManager 的内存中。
  • State 大小不能超过 TM 内存。
  • TM 异步将 State 数据写入外部存储。

MemoryStateBackendFSStateBackend 都依赖于 HeapKeyedStateBackendHeapKeyedStateBackend 使用 State 存储数据。

3、RocksDBStateBackend

RocksDBStateBackend 跟内存型和文件型都不同 。

RocksDBStateBackend 使用嵌入式的本地数据库 RocksDB 将流计算数据状态存储在本地磁盘中,不会受限于 TaskManager 的内存大小,在执行检查点的时候,再将整个 RocksDB 中保存的 State 数据全量或者增量持久化到配置的文件系统中,在 JobManager 内存中会存储少量的检查点元数据。RocksDB 克服了 State 受内存限制的问题,同时又能够持久化到远端文件系统中,比较适合在生产中使用。

缺点:RocksDBStateBackend 相比基于内存的 StateBackend,访问 State 的成本高很多,可能导致数据流的吞吐量剧烈下降,甚至可能降低为原来的 1 / 10 1/10 1/10

适用场景

  • 最适合用于处理大状态、长窗口,或大键值状态的有状态处理任务。
  • RocksDBStateBackend 非常适合用于高可用方案。
  • RocksDBStateBackend 是目前唯一支持增量检查点的后端。增量检查点非常适用于超大状态的场景。

注意点

  • 总 State 大小仅限于磁盘大小,不受内存限制。
  • RocksDBStateBackend 也需要配置外部文件系统,集中保存 State。
  • RocksDB 的 JNI API 基于 byte 数组,单 Key 和单 Value 的大小不能超过 8 8 8 字节。
  • 对于使用具有合并操作状态的应用程序,如 ListState ,随着时间可能会累积到超过 2 31 2^{31} 231 字节大小,这将会导致在接下来的查询中失败。

27、Flink 状态如何持久化?

首先,Flink 的状态最终都要持久化到第三方存储中,确保集群故障或者作业挂掉后能够恢复。RocksDBStateBackend 持久化策略有两种:

  • 全量持久化策略,RocksFullSnapshotStrategy
  • 增量持久化策略,RocksIncementalSnapshotStrategy

1、全量持久化策略

每次将全量的 State 写入到状态存储中(HDFS)。内存型、文件型、RocksDB 类型的 StataBackend 都支持全量持久化策略。

在这里插入图片描述
在执行持久化策略的时候,使用异步机制,每个算子启动 1 1 1 个独立的线程,将自身的状态写入分布式存储可靠存储中。在做持久化的过程中,状态可能会被持续修改,基于内存的状态后端使用 CopyOnWriteStateTable 来保证线程安全,RocksDBStateBackend 则使用 RocksDB 的快照机制,使用快照来保证线程安全。

2、增量持久化策略

增量持久化就是每次持久化增量的 State,只有 RocksDBStateBackend 支持增量持久化。

Flink 增量式的检查点以 RocksDB 为基础, RocksDB 是一个基于 LSM-Tree 的 KV 存储。新的数据保存在内存中, 称为 memtable。如果 Key 相同,后到的数据将覆盖之前的数据,一旦 memtable 写满了,RocksDB 就会将数据压缩并写入磁盘。memtable 的数据持久化到磁盘后,就变成了不可变的 sstable

因为 sstable 是不可变的,Flink 对比前一个检查点创建和删除的 RocksDB sstable 文件就可以计算出状态有哪些发生改变。

为了确保 sstable 是不可变的,Flink 会在 RocksDB 触发刷新操作,强制将 memtable 刷新到磁盘上。在 Flink 执行检查点时,会将新的 sstable 持久化到 HDFS 中,同时保留引用。这个过程中 Flink 并不会持久化本地所有的 sstable,因为本地的一部分历史 sstable 在之前的检查点中已经持久化到存储中了,只需增加对 sstable 文件的引用次数就可以。

RocksDB 会在后台合并 sstable 并删除其中重复的数据。然后在 RocksDB 删除原来的 sstable,替换成新合成的 sstable。新的 sstable 包含了被删除的 sstable 中的信息,通过合并历史的 sstable 会合并成一个新的 sstable,并删除这些历史 sstable。可以减少检查点的历史文件,避免大量小文件的产生。

28、Flink 状态过期后如何清理?

1、DataStream 中状态过期

可以对 DataStream 中的每一个状态设置清理策略 StateTtlConfig,可以设置的内容如下:

  • 过期时间:超过多长时间未访问,视为 State 过期,类似于缓存。
  • 过期时间更新策略:创建和写时更新、读取和写时更新。
  • State 可见性:未清理可用,超时则不可用。

2、Flink SQL 中状态过期

Flink SQL 一般在流 Join、聚合类场景使用 State,如果 State 不定时清理,则导致 State 过多,内存溢出。清理策略配置如下:

StreamQueryConfig qConfig = ...
//设置过期时间为 min = 12小时 ,max = 24小时
qConfig.withIdleStateRetentionTime(Time.hours(12),Time.hours(24));

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/72584.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ADB连接安卓手机提示unauthorized

近期使用airtest进行自动化测试时,因为需要连接手机和电脑端,所以在使用adb去连接本人的安卓手机vivo z5时,发现一直提示unauthorized。后来经过一系列方法尝试,最终得以解决。 问题描述: 用数据线将手机接入电脑端&…

一个案例:Vue2组件化开发组件从入门到入土

1. 环境搭建 1.1. 创建项目 npm install -g vue/clivue create vue_study_todolist1.2. 清空项目代码 清楚HelloWorld.Vue代码中的内容。 1.3. 启动空项目 1.4 项目目标 项目组件实现以下效果 2. 组件拆分代码 Vue是一个基于组件的框架,允许您将界面拆分成小的…

任我行 CRM SQL注入漏洞复现(HW0day)

0x01 产品简介 任我行CRM(Customer Relationship Management)是一款专业的企业级CRM软件,旨在帮助企业有效管理客户关系、提升销售效率和提供个性化的客户服务。 0x02 漏洞概述 任我行 CRM SmsDataList 接口处存在SQL注入漏洞,未…

基于熵权法对Topsis模型的修正

由于层次分析法的最大缺点为:主观性太强,影响判断,对结果有很大影响,所以提出了熵权法修正。 变异程度方差/标准差。 如何度量信息量的大小: 把不可能的事情变成可能,这里面就有很多信息量。 概率越大&…

IC设计仿真云架构

对于IC仿真来说,最重要的是要安全、可维护、高性能的的HPC环境环境。 那么云上如何搭建起一套完整的IC仿真云环境呢? 这种架构应该长什么样子? 桌面虚拟化基础架构 将所有桌面虚拟机在数据中心进行托管并统一管理;同时用户能够…

HTML详解连载(5)

HTML详解连载(5) 专栏链接 [link](http://t.csdn.cn/xF0H3)下面进行专栏介绍 开始喽行高:设置多行文本的间距属性名属性值行高的测量方法 行高-垂直居中技巧 字体族属性名属性值示例扩展 font 复合属性使用场景复合属性示例注意 文本缩进属性…

挑战Open AI!!!马斯克宣布成立xAI.

北京时间7月13日凌晨,马斯克在Twitter上宣布:“xAI正式成立,去了解现实。”马斯克表示,推出xAI的原因是想要“了解宇宙的真实本质”。Ghat GPT横空出世已有半年,国内外“百模大战”愈演愈烈,AI大模型的现状…

Ajax-AJAX请求的不同发送方式

🥔:你一定能成为想要成为的人 发送AJAX请求不同方式 发送AJAX请求不同方式1、jQuery发送AJAX请求2、axios发送AJAX请求(重点)3、fetch发送AJAX请求 发送AJAX请求不同方式 1、jQuery发送AJAX请求 首先需要jquery的js文件&#xf…

集合Collection-List-ArrayList学习

一、集合 集合是数据容器。相较于数组集合具有以下几个特点: 数组一旦创建,长度不可改变。集合的长度会自动扩容。集合具有很多数组没有的功能函数API数组元素的存储特点单一,不同的集合有不同的存储特点。 1. Collection顶层接口 Collect…

用python来爬取某鱼的商品信息(2/2)

目录 上一篇文章 本章内容 设置浏览器为运行结束后不关闭(可选) 定位到搜索框的xpath地址 执行动作 获取cookie 保存为json文件 修改cookie的sameSite值并且导入cookie 导入cookie(出错) 导入cookie(修改后&…

Jmeter(五) - 从入门到精通 - 创建网络计划实战和创建高级Web测试计划(详解教程)

1.简介 上一篇中已经将其的理论知识介绍了一下,这一篇就带着大家一步一步的把上一篇介绍的理论知识实践一下,然后再说一下如何创建高级web测试计划。 2.网络计划实战 通过上一篇的学习,将其分类为: (1)不需…

python -- 函数闭包

1. LEGB规则 L: local 是局部作用域 E: Enclosed 是嵌套函数的外层函数作用域 G: Global 全局作用域 B:Build-In 内置作用域 变量的使用权重:局部变量 > 外层作用域变量 > 全局变量 > 内置变量 下面代码执行后,x变量的值分别为多少&#xff1…

KafkaStream:Springboot中集成

1、在kafka-demo中创建配置类 配置kafka参数 package com.heima.kafkademo.config;import lombok.Data; import org.apache.kafka.common.serialization.Serdes; import org.apache.kafka.streams.StreamsConfig; import org.springframework.boot.context.properties.Configu…

怎么做Tik Tok海外娱乐公会呢?新加坡市场怎么样?

一、为什么选择TikTok直播 1. 海外市场潜力巨大 • 自2016年始,多家直播平台陆续拓展至东南亚、中东、俄罗斯、日韩、欧美、拉美等地区。 • 海外市场作为直播发展新蓝海,2021年直播行业整申请cmxyci体规模达百亿美元,并维持高速增长。 &a…

【数据结构系列】链表

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

异常(下)Java常见异常,异常的使用原则

文章目录 前言一、Java常见异常 1.常见异常2.实例展示二、异常的使用原则总结 前言 该文介绍了Java的一些常见异常,并给出对应的例子进行解释。介绍异常的使用原则,即创建,抛出异常的编程规范。 一、Java常见异常 前要:Java API中…

sklearn机器学习库(一)sklearn中的决策树

sklearn机器学习库(一)sklearn中的决策树 sklearn中决策树的类都在”tree“这个模块之下。 tree.DecisionTreeClassifier分类树tree.DecisionTreeRegressor回归树tree.export_graphviz将生成的决策树导出为DOT格式,画图专用tree.export_text以文字形式输出树tree.…

Jmeter(六) - 从入门到精通 - 建立数据库测试计划(详解教程)

1.简介 在实际工作中,我们经常会听到数据库的性能和稳定性等等,这些有时候也需要测试工程师去评估和测试,因此这篇文章主要介绍了jmeter连接和创建数据库测试计划的过程,在文中通过示例和代码非常详细地介绍给大家,希望对各位小伙…

基于YOLOv8+PyQt5开发的行人过马路危险行为检测告警系统(附数据集和源码下载)

系列文章目录 文章目录 系列文章目录前言欢迎来到我的博客!我很高兴能与大家分享关于基于YOLOv8的行人过马路危险行为检测告警系统的内容。 一、系统特点1. 采用最新最优秀的目标检测算法YOLOv82. 系统分别基于PyQt5开发了两种GUI图形界面,供大家学习使用…

consul安装启动流程

普通软件包安装 首先cd /opt ,将安装包放到该目录下 下载consul安装包 进入consul官网找到自己开发平台对应的安装包下载 https://www.consul.io/downloads.html 或使用命令 wget https://releases.hashicorp.com/consul/1.6.2/consul_1.6.2_linux_amd64.zip (如果…