大语言模型带来的一些启发

仅代表个人看法,不喜勿喷。

The limits of my language means the limits of my world. (Ludwig Wittgenstein)

我的语言的极限意味着我的世界的极限。——维特根斯坦

大语言模型解决的不仅是处理文本相关问题,它带来的是人对世界的理解,或者说让机器可以直接理解人的意图,而不再需要翻译成指邻、代码,而语言本身又隐含了人对世界的理解。从这个角度看,自然语言模型引领AI时代的进步也就不足为奇了。

十年前说这个,可能觉得很科幻吧;三年前,当看到GPT-3生成的驴唇不对马嘴的文章和回答,也只当是个炒作的噱头,一笑了之;最近两个月发布的AI进展真称得上是日新月异了,在这一刻,当ChatGPT仅两个月就月活过亿,那只能说,你可以不变,但阻止不了世界改变。

过分拟合人的想法是对真实世界的扭曲

图片来自 GPT-4 论文[1],对比了预训练模型和使用强化学习调优后模型预测的分布。可以看到,没调前(左图)和真实分布基本是一致的:世界是什么样,模型就学成了什么样;学习调优反而不一致了。强化学习的目标是让AI的回答更符合人的提问意图,以及去除毒性(数据中的偏见、攻击性)。
数据也是人生成的,也有鸡汤,也有漫骂,所以…… 当有一天,我们看到世界的全貌,会怎么样?

image.png

你想要的答案到底是什么

探讨来自谷歌2022年初探讨聊天机器人的论文LaMDA[2],论文从三方面评估聊天机器人的回答质量:

  • sensibleness:文本是否合理,跟历史对话是否有冲突(靠谱)
    瞎编乱造,前后矛盾肯定是不行的,回答最好还能有理有据。
  • Specificity:对于提问是否有针对性,避免笼统回复(有用)
    比如你问AI,这电影怎么样?它回答“不错”,这就等于没说,你需要告诉好在哪。
  • Interestingness:文本是否能引起人的注意或者好奇,是否是超出期待的巧妙回复(有趣)
    最好还能带来启发,满足情绪上的一些需求。
    (三者权重不同)
    从某个角度上讲,这也是我们对人的期许,逐层渐进。是不是觉得有点像:找男朋友的筛选标准?

多闻和推理需要不同的训练途径

实验来自DeepMind(发明AlphaGo的公司)在2021年12月发布的一篇论文:Gopher[3]
任何学术科目,连同一般知识,通过改进模型规模都能提升其效果,但规模对逻辑推理、常识和数学任务的好处较少。
最近一两年,出现的一些针对逻辑推理的训练方法,比如 CoT:Chain-of-Thought思想链,主要指模型的多步推理能力,以解决更为复杂的问题。

Google的PaLM论文[4]里,有很多推理示例,比如下面这个推理示例:

用户输入:迈克尔在法国那个非常有名的博物馆里看它最著名的画作。然而,创作这幅画的艺术家恰恰让迈克尔想起了他小时候最喜欢的卡通人物。卡通人物平时手里拿的东西是哪个国家的?

模型输出:卢浮宫最著名的画作是蒙娜丽莎。制作蒙娜丽莎的艺术家是达芬奇。 Leonardo da Vinci 也是卡通忍者神龟中主角的名字。列奥纳多·达·芬奇来自意大利。列奥纳多·达·芬奇平时手里拿着的东西是武士刀。武士刀的原产国是日本。答案是“日本”。

读万卷书

来自DeepMind在2022年3月发布的论文Chinchillla[5],它针对训练数据量,模型参数量,以及数据训练量进行实验,得出一些结论:

  • 更长的训练时间,更多token,能提升模型效果
    学习更多的知识和更多训练更为重要
  • 大模型的参数量和性能之间存在幂律分布
    学到一定程度之后,进步就越来越慢了
  • 训练时token越多,模型效果越好
    作者认为模型的大小与训练token量应等比增加。
    从这个角度出发,作者将模型从280B参数降到了70G,用更多token训练模型,模型效果没有下降,反而还有些提升。
    从人的角度看,不需要太过纠结于拟合当前的知识和存储量,更重要的是扩展知识面,另外应该多“思考”。

行万里路

众所周知,GPT-3.5没有相关论文,而GPT-4的论文[1]主要介绍了模型效果,而没有具体实验的技术和模型细节。
从实验来看在MMLU测试中,之前模型通过种种优化,一般都在70分左右,最好也只有75分,而GPT-4达到了86.4分,其中强化学习功不可没。

GPT-3.5说它的结构与InstructGPT(2022-03)[6]一致,而InstructGPT主要的进步就是:RLHF(基于人类反馈的强化学习),它与之前的有监督学习和无监督学习不同的是通过模拟环境下试错,拥有了更长远的“眼光”。
当然,这个阶段的AI也不可能一家独大,最近发布的基于Meta的LLaMA[7]模型优化的经济型模型 ColossalChat[8] 也使用了 RLHF(基于人类反馈的强化学习)已经开源并且开放了几乎是即下即用的github下载,听说前两天发布的 Dolly[9] 单机模型效果也很好。

知识的互通性

当机器听得懂人话,不再用程序员翻译,更进一步还能听得懂声音,看得懂图片,视频,智力题…… 输出也不限于文字回答,还可能是图片,代码,拆解的方案,推理的步骤。从LLM(大语言模型)到MLLMs(多模态大语言模型)的概念提出之后,又扩展了LLM的用途。所有可说,不可说,无法用语言描述的规律……
23年3月发布了很多ChatGPT周边的应用,比如微软的Visual ChatGPT[10],自身没有训练大模型,只调用现有的图像处理和自然语言模型就实现了很好的带图像的聊天功能,微软的Kosmos-1[11] 结合图像和语言的大模型在智力题,直接识图方面能力也很强。

关于版权

很多训练数据和评测都是公开的,而训练大模型时一般多数数据来自互联网,因此其产出的回答版权归谁,还真不好说。巨头可以不公开模型结构,训练细节,这都是公司的产权,可以不对外开放,但是从互联网上学到的知识训练出的模型,生成的答案,这个版权就不好说了,不止是语言模型,大多数生成模型可能都会遇到这个问题。

一些想法

如果说前两次工业革命解放了人的体力,那么信息和AI就可能解放人的脑力,生产力的变化也会引起社会形态的变化。有点迷茫,忽然想到《双城记》:

这是最好的时代,这是最坏的时代,这是智慧的年代,这是愚蠢的年代;这是信仰的时期,这是怀疑的时期;这是光明的季节,这是黑暗的季节;这是希望之春,这是失望之冬;人们面前应有尽有,人们面前一无所有;人们正踏上天堂之路,人们正走向地狱之门。

参考引用

1 GPT-4 Technical Report
2 LaMDA: Language Models for Dialog Applications
3 Scaling Language Models: Methods, Analysis & Insights from Training Gopher
4 PaLM: Scaling Language Modeling with Pathways
5 Training Compute-Optimal Large Language Models
6 Training language models to follow instructions with human feedback
7 LLaMA: Open and Efficient Foundation Language Models
8 ColossalChat github
9 Dolly download addr
10 Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models
11 Language Is Not All You Need: Aligning Perception with Language Models

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/7258.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

华为网络篇 单臂路由-17

实验难度 2实验复杂度2目录 一、实验原理 二、实验拓扑 三、实验步骤 四、实验过程 总结 一、实验原理 单臂路由(router-on-a-stick)是指在路由器的一个接口上通过配置子接口(或“逻辑接口”,并不存在真正物理接口&…

EasyExcel的简单使用(easyExcel和poi)

EasyExcel的简单使用 前言 Excel读 1.实体类 2.读监听器与测试类 3.输出结果 Excel写 1.实体类 2.写入Excel的测试类 3.输出结果 填充Excel 1.Excel模板 2.测试类 3.输出结果 前言 EasyExcel类是一套基于Java的开源Excel解析工具类,相较于传统的框架如Apache poi、…

Go 语言数组和切片的区别

原文链接: Go 语言数组和切片的区别 在 Go 语言中,数组和切片看起来很像,但其实它们又有很多的不同之处,这篇文章就来说说它们到底有哪些不同。 另外,这个问题在面试中也经常会被问到,属于入门级题目&…

堆及其堆排序

堆是一种特殊的数据结构,底层实现是靠数组存储以及完全二叉树的性质 文章目录一、堆概念二、堆实现三、堆源码四、堆排序一、堆概念 完全二叉树用数组来存储可以达到空间的有效利用且可以直观反映它们之间的逻辑关系,双亲与孩子之间的关系。一般在数组中…

一文说透虚拟内存

为什么我们需要虚拟内存 提供一个虚拟化封装,让上层的程序员不用担心内存分配,物理地址的总大小。同时如果要手动管理内存是一件麻烦的事,比如一个程序读到另一个程序的物理地址,并且也很难保障多个处理器不会同时读取写入同一块…

GitHub Action 使用

GitHub Action 使用 GitHub Actions 是一种持续集成和持续交付 (CI/CD) 平台,可用于自动执行生成、测试和部署管道。 您可以创建工作流程来构建和测试存储库的每个拉取请求,或将合并的拉取请求部署到生产环境。GitHub 提供 Linux、Windows 和 macOS 虚拟…

训练AI数据模型所需要的高性能计算机配置

目录 配置一 配置二 配置三 云服务器和超级计算机 AI模型训练是一种机器学习的过程,通过训练深度学习模型来自动化处理数据和完成任务。AI训练可以帮助企业和研究人员开发出更加智能、高效的应用,从而提高生产力和创新能力。 以下是按训练性能从低到…

对挖矿病毒 kdevtmpfsi 的处理办法

需求背景: 服务器CPU资源使用一直处于100%的状态,通过 top 命令查看,发现可疑进程 kdevtmpfsi。通过 google搜索,发现这是挖矿病毒。 排查方法 首先:查看 kdevtmpfsi 进程,使用 ps -ef | grep kdevtmpfsi …

数据结构之线性表

文章目录1. 线性表的定义2. 线性表的抽象数据类型3. 线性表的顺序存储结构4. 线性表的链式存储结构5. 单链表结构和顺序存储结构优缺点6. 静态链表7. 循环链表8. 双向链表1. 线性表的定义 零个或多个数据元素的有限序列 线性表的定义中强调有限和序列两个方面。 有限&#xff…

华硕ROG|玩家国度 冰刃7双屏 GX650PY Windows11原厂预装系统 工厂模式恢复安装带ASUSRecevory一键还原

华硕ROG|玩家国度 冰刃7双屏 GX650PY Windows11原厂预装系统 工厂模式恢复安装带ASUSRecevory一键还原 文件地址:https://pan.baidu.com/s/1snKOsH3OMl3GZLqeAf-GLA?pwd8888 华硕工厂恢复系统 ,安装结束后带隐藏分区以及机器所有驱动软件 需准备一个…

【树】你真的会二叉树了嘛? --二叉树LeetCode专题Ⅲ

Halo,这里是Ppeua。平时主要更新C语言,C,数据结构算法......感兴趣就关注我吧!你定不会失望。 🌈个人主页:主页链接 🌈算法专栏:专栏链接 我会一直往里填充内容哒! &…

MySQL基础-变量/流程控制/游标/触发器

文章目录MySQL基础-变量/流程控制/游标/触发器一、变量1、系统变量2、用户变量二、流程控制1、分支语句2、循环语句3、跳转语句三、游标1、概念2、使用四、触发器1、触发器概念2、触发器使用3、触发器的优缺点MySQL基础-变量/流程控制/游标/触发器 一、变量 在MySQL数据库的存…

RocketMQ水平扩展及负载均衡详解

文章目录 Broker端水平扩展Broker负载均衡commit logProducer负载均衡Consumer负载均衡集群模式广播模式RocketMQ是一个分布式具有高度可扩展性的消息中间件。本文旨在探索在broker端,生产端,以及消费端是如何做到横向扩展以及负载均衡的。 Broker端水平扩展 Broker负载均衡…

前端项目-05-轮播图banner和Floor组件开发-全局轮播图组件抽取

目录 1-轮播图模块数据开发 2-floor组件开发 3-抽取全局轮播图组件 1-轮播图模块数据开发 轮播图需要用到swiper插件,先安装5.4.5版本的swiper:npm install --save swiper^5.4.5 --force 模拟从服务器获取数据; 1-编写mockRequests的js…

【ACWing算法课】二分查找

前言🍉 二分查找一个简单的算法,但是因为边界问题往往写不好。特此记录模板,以便快捷使用。 [二分查找]从列表q找到第一个>k的数,返回位置👑 [二分查找]从列表q找到第一个>k的数,返回位置def bsear…

three.js实现3d球体树状结构布局——树状结构的实现

目录系列文章安装依赖基本分析实体类场景相机渲染器辅助线环境光点光源球形几何体球形几何体的材质线几何体线几何体的材质物体文本轨道控制实现效果实现源码参考文档系列文章 three.js实现3d球体树状结构布局——添加入场、出场、点击放大等动画 安装依赖 npm i three three…

Adaptive AUTOSAR——Time Synchronization(VRTE 3.0 R21-11)

15 Time Synchronization 15.1 What is Time Synchronization? 时间同步是自适应平台基础中的一个功能集群。时间同步通过库向应用程序提供C API,该库作为RTA-VRTE入门套件的一部分提供,并与应用程序链接以访问该功能。 本版本包含非常少量的时间同步…

ASIC-WORLD Verilog(1)一日Verilog

写在前面 在自己准备写一些简单的verilog教程之前,参考了许多资料----asic-world网站的这套verilog教程即是其一。这套教程写得极好,奈何没有中文,在下只好斗胆翻译过来(加了自己的理解)分享给大家。 这是网站原文&…

Helm学习笔记

文章目录概念定义helm组件helm的工作流程helm安装helm仓库helm部署应用helm应用的更新或回退或卸载概念 定义 学习helm首先得了解helm是什么,我们先来看一下helm的定义:helm是将kubernetes的各种资源对象打包,类似于Linux中的yum工具&#…

【HTML系列】第六章 · 框架标签、HTML实体、HTML全局属性和meta元信息

写在前面 Hello大家好, 我是【麟-小白】,一位软件工程专业的学生,喜好计算机知识。希望大家能够一起学习进步呀!本人是一名在读大学生,专业水平有限,如发现错误或不足之处,请多多指正&#xff0…