数据分析第十三讲:数据可视化入门(二)

数据可视化入门(二)

本章我们尝试用 matplotlib 来绘制一些高阶统计图表。正如前面所说的,大家可以通过 matplotlib 官方网站上提供的文档和示例来学习如何使用 matplotlib 并绘制出更加高级的统计图表;尤其是在定制一些比较复杂的图表时,我们建议大家直接找到官网提供的示例,然后只需要做出相应的修改,就可以绘制出自己想要的图表。这种“拷贝+修改”的做法应该会大大提高你的工作效率,因为大多数时候,你的代码跟官网上的代码就仅仅是数据有差别而已,没有必要去做重复乏味的事情。

气泡图

气泡图可以用来了解三个变量之间的关系,通过比较气泡位置和大小来分析数据维度之间的相关性。例如在我们之前绘制的月收入和网购支出的散点图中,我们已经发现了二者的正相关关系,如果我们引入第三个变量网购次数,那么我们就需要使用气泡图来进行展示。

代码:

income = np.array([5550, 7500, 10500, 15000, 20000, 25000, 30000, 40000])
outcome = np.array([800, 1800, 1250, 2000, 1800, 2100, 2500, 3500])
nums = np.array([5, 3, 10, 5, 12, 20, 8, 10])

# 通过scatter函数的s参数和c参数分别控制面积和颜色
plt.scatter(income, outcome, s=nums * 30, c=nums, cmap='Reds')
# 显示颜色条
plt.colorbar()
# 显示图表
plt.show()

输出:

面积图

面积图又叫堆叠折线图,是在折线图的基础上,对折线以下的区域进行颜色填充(展示面积),用于在连续间隔或时间跨度上展示数值,一般用来显示趋势和对比数值,不同颜色的填充可以让多个面积块之间的对比和趋势更好的突显。下面的例子中,我们用面积图来展示从周一到周日花在睡觉、吃饭、工作和玩耍上的时间。

代码:

plt.figure(figsize=(8, 4))
days = np.arange(7)
sleeping = [7, 8, 6, 6, 7, 8, 10]
eating = [2, 3, 2, 1, 2, 3, 2]
working = [7, 8, 7, 8, 6, 2, 3]
playing = [8, 5, 9, 9, 9, 11, 9]
# 绘制堆叠折线图
plt.stackplot(days, sleeping, eating, working, playing)
# 定制横轴刻度
plt.xticks(days, labels=[f'星期{x}' for x in '一二三四五六日'])
# 定制图例
plt.legend(['睡觉', '吃饭', '工作', '玩耍'], fontsize=10)
# 显示图表
plt.show()

输出:

雷达图

雷达图通常用来比较多个定量数据,用于查看哪些变量具有相似的值。 雷达图也可用于查看数据集中哪些变量的值比较低,哪些变量的值比较高,是显示性能或表现的理想选择。经常观看篮球、足球比赛的读者应该对雷达图非常熟悉,例如在 NBA 的转播中就经常使用雷达图来展示球员的各项数据。雷达图的本质折线图,只不过将折线图映射到了极坐标系。在绘制雷达图时,需要让折线闭合,简单的说就是首尾相连,下面是绘制雷达图的代码。

代码:

labels = np.array(['速度', '力量', '经验', '防守', '发球', '技术'])
# 马龙和水谷隼的数据
malong_values = np.array([93, 95, 98, 92, 96, 97])
shuigu_values = np.array([30, 40, 65, 80, 45, 60])
angles = np.linspace(0, 2 * np.pi, labels.size, endpoint=False)
# 多加一条数据让图形闭合
malong_values = np.append(malong_values, malong_values[0])
shuigu_values = np.append(shuigu_values, shuigu_values[0])
angles = np.append(angles, angles[0])
# 创建画布
plt.figure(figsize=(4, 4), dpi=120)
# 创建坐标系
ax = plt.subplot(projection='polar')
# 绘图和填充
plt.plot(angles, malong_values, color='r', linewidth=2, label='马龙')
plt.fill(angles, malong_values, color='r', alpha=0.3)
plt.plot(angles, shuigu_values, color='g', linewidth=2, label='水谷隼')
plt.fill(angles, shuigu_values, color='g', alpha=0.2)
# 显示图例
ax.legend()
# 显示图表
plt.show()

输出:

玫瑰图

玫瑰图是映射在极坐标下的柱状图,由弗罗伦斯·南丁格尔(Florence Nightingale)所发明,当年是南丁格尔用来呈现战地医院季节性死亡率的一种图表。由于半径和面积的关系是平方的关系,南丁格尔玫瑰图会将数据的比例大小夸大,尤其适合对比大小相近的数值,同时由于圆形有周期的特性,所以南丁格尔玫瑰图也适用于表示一个周期内的时间概念,比如星期、月份。

代码:

group1 = np.random.randint(20, 50, 4)
group2 = np.random.randint(10, 60, 4)
x = np.array([f'A组-Q{i}' for i in range(1, 5)] + [f'B组-Q{i}' for i in range(1, 5)])
y = np.array(group1.tolist() + group2.tolist())
# 玫瑰花瓣的角度和宽度
theta = np.linspace(0, 2 * np.pi, x.size, endpoint=False)
width = 2 * np.pi / x.size
# 生成8种随机颜色
colors = np.random.rand(8, 3)
# 将柱状图投影到极坐标
ax = plt.subplot(projection='polar')
# 绘制柱状图
plt.bar(theta, y, width=width, color=colors, bottom=0)
# 设置网格
ax.set_thetagrids(theta * 180 / np.pi, x, fontsize=10)
# 显示图表
plt.show()

输出:

3D图表

matplotlib 还可以用于绘制3D图,具体的内容大家可以参考官方文档,下面我们用一段简单的代码为大家展示如何绘制3D图表。

代码:

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(8, 4), dpi=120)
# 创建3D坐标系并添加到画布上
ax = Axes3D(fig, auto_add_to_figure=False)
fig.add_axes(ax)
x = np.arange(-2, 2, 0.1)
y = np.arange(-2, 2, 0.1)
x, y = np.meshgrid(x, y)
z = (1 - y ** 5 + x ** 5) * np.exp(-x ** 2 - y ** 2)
# 绘制3D曲面
ax.plot_surface(x, y, z)
# 显示图表
plt.show()

输出:

![<img src="res/3d_surface_chart.png" style="zoom:60%;">](https://img-blog.csdnimg.cn/direct/cb1396029b824f4a9f961e6d356eb122.png)

需要指出的是, JupyterLab 中渲染的3D图并不是真正的3D图,因为你没有办法调整观察者的视角,也没有办法旋转或者缩放。如果想要看到真正的3D效果,需要在将图表渲染到 Qt 窗口中,为此我们可以先安装名为 PyQt6 的三方库,如下所示。

%pip install PyQt6

然后,我们使用魔法指令让 JupyterLab 将图表渲染到 Qt 窗口中。

%matplotlib qt

在完成上面的操作后,我们可以重新运行刚才绘制3D图的代码,看到如下所示的窗口。在这个窗口中,我们可以通过鼠标对3D进行旋转、缩放,我们有可以选中图表的一部分数据进行观测,是不是非常的酷。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/725374.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

人工智能中的监督学习和无监督学习

欢迎来到 Papicatch的博客 目录 &#x1f349;引言 &#x1f349;监督学习 &#x1f348;基本思想 &#x1f348;具体过程 &#x1f34d;数据收集 &#x1f34d;数据预处理 &#x1f34d;模型选择 &#x1f34d;模型训练 &#x1f34d;模型评估 &#x1f34d;模型部署…

【深度学习基础】详解Pytorch搭建CNN卷积神经网络LeNet-5实现手写数字识别

目录 写在开头 一、CNN的原理 1. 概述 2. 卷积层 内参数&#xff08;卷积核本身&#xff09; 外参数&#xff08;填充和步幅&#xff09; 输入与输出的尺寸关系 3. 多通道问题 多通道输入 多通道输出 4. 池化层 平均汇聚 最大值汇聚 二、手写数字识别 1. 任务…

[C++][数据结构][图][下][最短路径]详细讲解

目录 1.最短路径1.单源最短路径 -- Dijkstra算法2.单源最短路径 -- Bellman-Ford算法3.多源最短路径 -- Floyd-Warshall算法原理 1.最短路径 最短路径问题&#xff1a;从在带权有向图G中的某一顶点出发&#xff0c;找出一条通往另一顶点的最短路径&#xff0c;最短也就是沿路径…

spark学习总结

系列文章目录 第1天总结&#xff1a;spark基础学习 1- Spark基本介绍&#xff08;了解&#xff09;2- Spark入门案例&#xff08;掌握&#xff09;3- 常见面试题&#xff08;掌握&#xff09; 文章目录 系列文章目录前言一、Spark基本介绍1、Spark是什么1.1 定义1.2 Spark与M…

valgrind工具的交叉编译及使用

一 概述 valgrind是一款非常好用的工具&#xff0c;用于检测内存泄漏等&#xff0c;这里讲述如何将其交叉编译到arm开发板及如何使用 【C/C 集成内存调试、内存泄漏检测和性能分析的工具 Valgrind 】Linux 下 Valgrind 工具的全面使用指南 - 知乎 (zhihu.com) valgrind: fai…

60.指针数组和数组指针

一.指针数组 指针数组是一个数组&#xff0c;在指针数组中存放的是指针变量。 定义一个指针数组p int *p[5]; 内存模型如下&#xff1a; 指针数组的初始化 #include <stdio.h>int main(void) {int a1;int b2;int c3;int i;int *p[3] {&a,&b,&c};for(i0…

Unbounded CKKS for Bits NTT with Composite Modulus

参考文献&#xff1a; [CHKKS18] Cheon J H, Han K, Kim A, et al. Bootstrapping for approximate homomorphic encryption[C]//Advances in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques…

技术差异,应用场景;虚拟机可以当作云服务器吗

虚拟机和云服务器是现在市面上常见的两种计算资源提供方式&#xff0c;很多人把这两者看成可以相互转换或者替代的物品&#xff0c;实则不然&#xff0c;这两种资源提供方式有许多相似之处&#xff0c;但是也有不少区别&#xff0c;一篇文章教你识别两者的技术差异&#xff0c;…

RabbitMQ实践——交换器(Exchange)和绑定(Banding)

大纲 direct型交换器默认交换器命名交换器 fanout型交换器topic型交换器headers型交换器 RabbitMQ在概念上由三部分组成&#xff1a; 交换器&#xff08;Exchange&#xff09;&#xff1a;负责接收消息发布者发布消息的结构&#xff0c;同时它会根据“绑定关系”&#xff08;Ba…

52【场景作图】空间感

参考 场景绘制&#xff0c;画面空间感如何拉开&#xff1f;分分钟就能学会的场景优化思路更新啦&#xff01;_哔哩哔哩_bilibili https://www.bilibili.com/video/BV1pa411J7Ps/?spm_id_from333.337.search-card.all.click&vd_source20db0c4e2d303527ed13c4b9cdf698ec 1 …

生活实用口语柯桥成人外语培训机构“客服”用英文怎么说?

● 01. “客服”英语怎么说&#xff1f; ● 我们都知道“客服”就是“客户服务”&#xff0c; 所以Customer Service就是#15857575376客服的意思。 但是这里的“客服”指代的不是客服人员&#xff0c; 而是一种Service服务。 如果你想要表达客服人员可以加上具体的职位&a…

Java宝藏实验资源库(1)文件

一、实验目的 掌握文件、目录管理以及文件操作的基本方法。掌握输入输出流的基本概念和流处理类的基本结构。掌握使用文件流进行文件输入输出的基本方法。 二、实验内容、过程及结果 1.显示指定目录下的每一级文件夹中的.java文件 运行代码如下 &#xff1a; import java.io.…

[C++][数据结构][图][中][图的遍历][最小生成树]详细讲解

目录 1.图的遍历1.广度优先遍历2.深度优先遍历 2.最小生成树1.Kruskal算法2.Prim算法 1.图的遍历 给定一个图G和其中任意一个顶点 v 0 v_0 v0​&#xff0c;从 v 0 v_0 v0​出发&#xff0c;沿着图中各边访问图中的所有顶点&#xff0c;且每个顶 点仅被遍历一次 “遍历”&…

# [0619] Task01 绪论、马尔可夫过程、动态规划

easy-rl PDF版本 笔记整理 P1 - P2 joyrl 比对 补充 P1 - P3 相关 代码 整理 最新版PDF下载 地址&#xff1a;https://github.com/datawhalechina/easy-rl/releases 国内地址(推荐国内读者使用)&#xff1a; 链接: https://pan.baidu.com/s/1isqQnpVRWbb3yh83Vs0kbw 提取码: us…

lib9-03 配置基于时间的 ACL

实验&#xff1a;配置基于时间的 ACL 1、实验目的 通过本实验可以掌握定义 time-range 的方法基于时间 ACL 的配置和调试方法 2、实验拓扑 实验拓扑如下图所示。本实验要求只允许主机 PC1 在周一到周五每天的 8&#xff1a;00-17&#xff1a;00 访问路由器 R3 的Telnet 服务…

Python的三种方式显示图片

from PIL import Image import numpy as np im Image.open("img.png") #方法一&#xff1a;使用PIL库显示图片 a np.array(im) imImage.fromarray(a) im.show() import matplotlib.pyplot as plt #方法二&#xff1a;使用matplotlib库显示图片 plt.imshow(a) plt.s…

Covalent实现对1000亿笔链上交易解析,支持AI长期数据可用性

在区块链与人工智能&#xff08;AI&#xff09;交汇处&#xff0c;讨论往往集中于去中心化推理和去中心化训练等方面。然而&#xff0c;这一数据的关键组成部分却一直未得到足够的重视。一个主要问题是&#xff1a;我们如何保护 AI 模型中的数据不受偏见和操纵的影响&#xff1…

linux环境编程基础学习

Shell编程&#xff1a; 相对的chmod -x xx.sh可以移除权限 想获取变量的值要掏点dollar&#xff08;&#xff04;&#xff09; 多位的话要加个花括号 运算&#xff1a;expr 运算时左右两边必须要加空格 *号多个含义必须加转义符 双引号可以加反单&#xff0c;但是发过来就不行 …

企业微信,机器人定时提醒

场景&#xff1a; 每天定时发送文字&#xff0c;提醒群成员事情&#xff0c;可以用机器人代替 人工提醒。 1&#xff09;在企业微信&#xff0c;创建机器人 2&#xff09;在腾讯轻联&#xff0c;创建流程&#xff0c;选择定时任务&#xff0c;执行操作&#xff08;企业微信机…

秋招突击——6/19——新作{括号生成、合并K个排序链表}

文章目录 引言新作括号生成个人实现实现时遇到的问题实现代码 参考思路实现代码 合并K个有序链表个人实现实现代码 参考实现实现代码 总结 引言 今天把第二篇论文投了&#xff0c;后续有审稿意见再说&#xff0c;然后在进行修改的。后续的生活要步入正轨了&#xff0c;每天刷题…