【Docker】——安装镜像和创建容器,详解镜像和Dockerfile

前言

在此记录一下docker的镜像和容器的相关注意事项

前提条件:已安装Docker、显卡驱动等基础配置

1. 安装镜像

网上有太多的教程,但是都没说如何下载官方的镜像,在这里记录一下,使用docker安装官方的镜像

Docker Hub的官方链接:https://www.docker.com/products/docker-hub/

在这里插入图片描述

点击Explore Docker Hub,在搜索框中输入:nvidia/cuda,转到tags,找到合适的镜像,复制链接即可

在这里插入图片描述

Docker镜像源

docker.chenby.cn/

为了更加快速的下载,一般会添加docker镜像源,提高下载速度,如果不适用docker镜像源,也可能下载失败,因此,完整的镜像下载命令如下:

docker pull docker.chenby.cn/nvidia/cuda:11.1.1-cudnn8-devel-ubuntu20.04

在这里插入图片描述

等待下载完毕即可,这个命令使用的cuda版本不高,应该可以在大部分机器上直接使用

  • 镜像重命名

    docker tag 旧镜像名 新镜像名
    docker rmi 旧镜像名

使用docker tag 其实会生成一个新镜像,我们可以使用docker rmi 删除旧的镜像

2. NVIDIA Container Toolkit (Docker使用GPU)

  • 设置NVIDIA Container Toolkit的stable版本存储库的GPG key:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

  • 安装toolkit:

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

3. 创建容器

现在需要进入一个空的项目,并进入到Dockerfile的文件目录中,在本例中,则需要命令行切换到docker_test目录下,并根据自己的需求,编辑dockerfile

在这里插入图片描述

其中,重点关注FROM的镜像源是否一致,详细的dockerfile自行了解(正常情况下,github的项目都是配置好的,只需注意FROM的镜像源),dockerfile示例如下(YOLOv10):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Builds ultralytics/ultralytics:latest image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Image is CUDA-optimized for YOLOv8 single/multi-GPU training and inference

# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3
FROM pytorch/pytorch:2.2.0-cuda12.1-cudnn8-runtime
RUN pip install --no-cache nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com

# Downloads to user config dir
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
    https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
    /root/.config/Ultralytics/

# Install linux packages
# g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
RUN apt update \
    && apt install --no-install-recommends -y gcc git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0

# Security updates
# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
RUN apt upgrade --no-install-recommends -y openssl tar

# Create working directory
WORKDIR /usr/src/ultralytics

# Copy contents
# COPY . /usr/src/ultralytics  # git permission issues inside container
RUN git clone https://github.com/ultralytics/ultralytics -b main /usr/src/ultralytics
ADD https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt /usr/src/ultralytics/

# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e ".[export]" albumentations comet pycocotools

# Run exports to AutoInstall packages
# Edge TPU export fails the first time so is run twice here
RUN yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32 || yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32
RUN yolo export model=tmp/yolov8n.pt format=ncnn imgsz=32
# Requires <= Python 3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991
RUN pip install --no-cache paddlepaddle>=2.6.0 x2paddle
# Fix error: `np.bool` was a deprecated alias for the builtin `bool` segmentation error in Tests
RUN pip install --no-cache numpy==1.23.5
# Remove exported models
RUN rm -rf tmp

# Set environment variables
ENV OMP_NUM_THREADS=1
# Avoid DDP error "MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library" https://github.com/pytorch/pytorch/issues/37377
ENV MKL_THREADING_LAYER=GNU


# Usage Examples -------------------------------------------------------------------------------------------------------

# Build and Push
# t=ultralytics/ultralytics:latest && sudo docker build -f docker/Dockerfile -t $t . && sudo docker push $t

# Pull and Run with access to all GPUs
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t

# Pull and Run with access to GPUs 2 and 3 (inside container CUDA devices will appear as 0 and 1)
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus '"device=2,3"' $t

# Pull and Run with local directory access
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t

# Kill all
# sudo docker kill $(sudo docker ps -q)

# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/ultralytics:latest)

# DockerHub tag update
# t=ultralytics/ultralytics:latest tnew=ultralytics/ultralytics:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew

# Clean up
# sudo docker system prune -a --volumes

# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/

# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3

# GCP VM from Image
# docker.io/ultralytics/ultralytics:latest
  • 创建容器

    将docker的ssh端口22映射到物理机的2222

    将docekr的 /usr/src/ultralytics 目录映射到物理机的 /local/path 目录

    -name : 容器的名字,可以自定义

    docker_images_id:镜像的名字,根据自己生成的镜像来改

sudo docker run --gpus all -it -p 2222:22 --name container_name -v /local/path:/usr/src/ultralytics docker_images_id:latest

这样,我们就建立好了docker images,同时创建了一个docker container,并将本地与docker建立了联系,我们就可以进入docker container内部,进行开发了

在这里插入图片描述

参考

vscode+docker搭建迷你开发环境。制作docker镜像,并通过vscode连接后进行开发

通过安装NVIDIA Container Toolkit在Docker中使用GPU

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/724225.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

进阶篇05——存储过程、存储函数、触发器

存储过程 简介 基本语法 创建和调用 -- 创建名为p1的存储过程&#xff0c;小括号里可以跟参数 -- 存储过程个人觉得就是SQL里的函数 create procedure p1() begin-- begin 和 end 之间是封装的SQL语句-- 可以是一条SQL也可以是多条SQLselect * from student; end;-- 调用存储…

【FreeRTOS】估算栈的大小

参考《FreeRTOS入门与工程实践(基于DshanMCU-103).pdf》 目录 估算栈的大小回顾简介计算说明估计函数用到的栈有多大合计 估算栈的大小 回顾 上一篇文章链接&#xff1a;http://t.csdnimg.cn/Cc8b4 传送门: 上一篇文章 上一篇文章创建的三个任务 /* 创建任务&#xff1a;声 *…

vivado SITE

描述 SITE是一个设备对象&#xff0c;表示许多不同类型的逻辑资源之一 可在目标Xilinx FPGA上获得。 SITE包括SLICE/CLB&#xff0c;它们是基本逻辑元件&#xff08;BEL&#xff09;的集合&#xff0c;如 查找表&#xff08;LUT&#xff09;、触发器、多路复用器&#xff0c;携…

网页钓鱼-克隆修改--劫持口令下载后门

免责声明:本文仅做技术交流与学习... 目录 1-右键另存为 2-goblin项目(不推荐) 修改goblin.yaml文件 运行exe ​编辑 3-Setoolkit (kali自带) 网页克隆---> 1-右键另存为 --不行就再定位元素进行修改. 2-goblin项目(不推荐) GitHub - xiecat/goblin: 一款适用于红蓝…

力扣每日一题 6/19 排序+动态规划

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 2713.矩阵中严格递增的单元格数【困难】 题目&#xff1a; 给你一个下标从…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 部门组队编程(200分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…

项目3:从0开始的RPC框架(扩展版)-3

七. 负载均衡 1. 需求分析 目前我们的RPC框架仅允许消费者读取第一个服务提供者的服务节点&#xff0c;但在实际应用中&#xff0c;同一个服务会有多个服务提供者上传节点信息。如果消费者只读取第一个&#xff0c;势必会增大单个节点的压力&#xff0c;并且也浪费了其它节点…

文件扫描工具都有哪些?职场大佬都在用的文本提取工具大盘点~

回想起刚毕业初入职场那阵子&#xff0c;领导让帮忙把纸质文件扫描提取为文本时&#xff0c;还只会傻乎乎地一点点操作&#xff0c;属实是费劲得很&#xff01; 好在后面受朋友安利&#xff0c;找到了4个能够快速实现文件扫描文字提取的方法&#xff0c;这才让我的办公效率蹭蹭…

GD32如何设计晶振电路

关于晶振电路真的简单吗&#xff1f;如何可靠的设计好GD32晶振电路&#xff0c;我们需要知道这些&#xff1a; 1、GD32可以选择哪些范围大小晶振&#xff1f; 以GD32F303为例&#xff0c;查询DATASHEET外部时钟电气特性小节可以看到晶振支持范围是4—32M范围均可选择 2、需不…

JupyterLab使用指南(六):JupyterLab的 Widget 控件

1. 什么是 Widget 控件 JupyterLab 中的 Widget 控件是一种交互式的小部件&#xff0c;可以用于创建动态的、响应用户输入的界面。通过使用 ipywidgets 库&#xff0c;用户可以在 Jupyter notebook 中创建滑块、按钮、文本框、选择器等控件&#xff0c;从而实现数据的交互式展…

51单片机STC89C52RC——3.1 数码管静态展示

目的 让数码管在指定位置显示指定数字 一&#xff0c;STC单片机模块 二&#xff0c;数码管 2.1 数码管位置 2.2 生活中用到的数目管 红绿灯 LED数码管在生活中随处可见&#xff0c;洗衣机、电饭煲、热水器、微波炉、冰箱、这些最基本的家用电器上基本都用到了这种7段LED数…

js语法---理解反射Reflect对象和代理Proxy对象

Reflect 基本要点 反射&#xff1a;reflect是一个内置的全局对象&#xff0c;它的作用就是提供了一些对象实例的拦截方法&#xff0c;它的用法和Math对象相似&#xff0c;都只有静态方法和属性&#xff0c;同时reflect也没有构造器&#xff0c;无法通过new运算符构建实例对象&…

WiFi/BLE芯片(1):英飞凌

英飞凌AIROC蓝牙芯片的应用场景:

error: ‘LocalParameterization’ is not a member of ‘ceres

一、错误提示&#xff1a; 对于以下报错&#xff1a; error: ‘LocalParameterization’ is not a member of ‘ceres’ error: ‘quatParam’ was not declared in this scope error: expected type-specifier 二、背景&#xff1a; 我是在Ubuntu20.04下&#xff0c;运行…

数据库 | 试卷五试卷六试卷七

1. 主码不相同&#xff01;相同的话就不能唯一标识非主属性了 2.从关系规范化理论的角度讲&#xff0c;一个只满足 1NF 的关系可能存在的四方面问题 是&#xff1a; 数据冗余度大&#xff0c;插入异常&#xff0c;修改异常&#xff0c;删除异常 3.数据模型的三大要素是什么&…

DDMA信号处理以及数据处理的流程---距离速度测量

Hello,大家好,我是Xiaojie,好久不见,欢迎大家能够和Xiaojie一起学习毫米波雷达知识,Xiaojie准备连载一个系列的文章—DDMA信号处理以及数据处理的流程,本系列文章将从目标生成、信号仿真、测距、测速、cfar检测、测角、目标聚类、目标跟踪这几个模块逐步介绍,这个系列的…

华为---OSPF单区域配置(一)

09、OSPF 9.1 OSPF单区域配置 9.1.1 原理概述 为了弥补距离矢量路由协议的不足&#xff0c;IETF组织开发了一种基于链路状态的内部网关协议——OSPF&#xff08;Open Shortest Path First&#xff0c;开放式最短路径优先&#xff09;。 OSPF作为基于链路状态的协议&#xf…

多态性(Java)

本篇学习面向对象语言的第三个特性——多态。 目录 1、多态的概念 2、继承多态实现条件 3、重写 4、重新与重载的区别&#xff1a; 5、向上转移和向下转型 5、1向上转型&#xff1a; 5、2 向下转型 1、多态的概念 多态的概念&#xff1a;通俗来说&#xff0c;就是多种形态…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA 的幸运游戏(100分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…