c语言回顾-结构体(2)

前言

前面讲了结构体的概念,定义,赋值,访问等知识,本节内容小编将讲解结构体的内存大小的计算以及通过结构体实现位段,话不多说,直接上干货!!!

1.结构体内存对齐

说到计算结构体的大小,就要了解结构体内存对齐原则。

结构体内存对齐是指在内存中存储结构体变量时,根据结构体成员的类型和大小,按照一定的规则进行内存对齐,以提高内存访问效率。

1.1对齐规则

1. 结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数与该成员变量大小的较小值。
- VS 中默认的值为 8
- Linux中 gcc 没有默认对齐数,对齐数就是成员自身的大小
3. 结构体总大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

举例说明

例1:
struct S1
{
 char c1;//1
 int i;//4
 char c2;//1
};
printf("%d\n", sizeof(struct S1));

358ae56e6a8c43a7946a96d7b72cce23.png    12字节为最大对齐数4的倍数,所以结构体大小为12

例2

struct S3
{
 double d;
 char c;
 int i;
};
printf("%d\n", sizeof(struct S3));

16个字节刚好为最大对齐数(double)的整数倍,所以结构体大小为16

1cf81618f136487d8a9c2850fed7e935.png

例3(结构体嵌套)

struct S4
{
 char c1;
 struct S3 s3;
 double d;
};
printf("%d\n", sizeof(struct S4));

223810700dab4332a9817404b7246bcc.png

32字节为最大对齐数8的倍数,所以结构体大小为32

1.2为什么存在内存对齐

1. 平台原因 (移植原因)
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定 类型的数据,否则抛出硬件异常。
2. 性能原因
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。假设一个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起
struct S1
{
 char c1;//1
 int i;//4
 char c2;//1
};
struct S2
{
 char c1;//1
 char c2;//1
int i;//4
};
printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));
S1 和 S2 类型的成员一模一样,但是 S1 和 S2 所占空间的大小有了一些区别。
S1=12,S2=8

1.3修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。
#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
 //输出的结果是什么?
 printf("%d\n", sizeof(struct S));
 return 0;
}
 对齐数设置为1时,大小为6
结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

2.结构体传参

#include <stdio.h>
struct S
{
 int data[1000];
 int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
 for(int i=0;i<4;i++){
 	printf("%d ",s.data[i]);
 }
  printf("\n%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
 for(int i=0;i<4;i++)
 printf("%d ",ps->data[i]);
 printf("\n%d\n", ps->num);
}
int main()
{
	print1(s); //传结构体
 print2(&s); //传地址
 return 0;
}

250b3170c0664a629fc901f861708bad.png

上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。
结论: 结构体传参的时候,要传结构体的地址。

3.结构体实现位段

3.1什么是位段

位段(Bit-fields)是一种在C语言中用于节省内存的技术,它允许程序员定义一个结构体或联合体中的成员变量,这些成员变量的大小以位为单位,而不是以字节为单位。位段可以用来表示那些只需要少量位来存储的数据,例如标志位或者状态位。

位段的定义方式是在结构体或联合体中使用冒号(:)指定成员变量所占用的位数。

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。
2. 位段的成员名后边有一个冒号和一个数字。
struct A
{
 int _a:2;//占2个两个bit位
 int _b:5;
 int _c:10;
 int _d:30;
};

位段式结构中的位可以理解二进制位

在C语言中,位段的大小取决于编译器和硬件平台的具体实现。通常,位段的大小是按照字节对齐的,但是位段内部的位数是按照定义的位数来分配的。

上述位段占了47位,对齐6个字节,也就是48位,但是用sizeof测试时出来是8字节

在大多数系统中,位段会按照最接近的字节边界对齐。由于这个结构体总共占用了47位,它可能会被对齐到6个字节(48位),因为这是最接近47位的字节数,并且可以容纳所有的位段。

然而,位段的确切大小和对齐方式取决于编译器和硬件平台的具体实现。在某些系统上,如果位段不能恰好填充到一个字节,编译器可能会分配额外的位来填充到下一个字节边界。此外,如果位段的大小超过了单个整数类型(通常是32位或64位)的位数,编译器可能会将它们分割到多个整数中。

3.2位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
struct S
{
 char a:3;
 char b:4;
 char c:5;
 char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

接下来通过画图来看内存空间的开辟分配

1.在申请的一块内存中,bit位是从左到右,还是从右到左使用,是不确定的,VS是从右到左

2.剩余的空间,不足下一个成员使用的时候,是浪费?还是继续使用?VS采取浪费

4a03d25720a9489698e86221d7957df6.png

bbe1ea93898c4fb2b422c5492fd043fc.png

ee80ce8c0d3343fcb26c548b1c5a790c.png

ok,回到最上面那个位段求大小

struct A
{
 int _a:2;//占2个两个bit位
 int _b:5;
 int _c:10;
 int _d:30;
};

一次性申请4个字节,第一次用17个bit位,剩余15个不够用,根据VS的规则,采取浪费,所以再次申请4个字节存取剩下的_d数据。

即该位段大小为8

127de9a0e3df4c0db94ca474e8f86d47.png

3.3位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
eg:32位或者64位int的长度占4个字节,16位int是2个字节
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。
所以需要根据不同的平台写不同的代码。

3.4位段的应用

IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小一些,对网络的畅通是有帮助的。

3.5位段使用的注意事项

位段的几个成员共有同一个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位 置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在一个变量中,然后赋值给位段的成员。
struct A {
  int _a : 2;
  int _b : 5;
  int _c : 10;
  int _d : 30;
};
int main() {
   struct A sa = {0};
   scanf("%d", &sa._b);//这是错误的
//正确的⽰范
   int b = 0;
   scanf("%d", &b);
   sa._b = b;
   return 0;
}

下面是搜集的位段注意事项的其他总结

1. 可移植性问题:位段的行为和大小可能因编译器和硬件平台而异。因此,位段不具有可移植性,应该避免在需要跨平台兼容的代码中使用位段。

2. 对齐和大小:位段的对齐方式和大小取决于编译器的实现。编译器可能会将位段对齐到字节边界,这可能导致额外的填充位。因此,不应该假设位段的确切大小,除非编译器文档明确说明了位段的行为。

3. 位段类型:位段通常使用 `unsigned int` 或 `int` 类型定义,但编译器可能会允许其他整数类型。然而,使用非标准类型可能会降低代码的可移植性。

4. 位段操作:位段的操作不如普通变量直观,因为它们涉及到位的操作。在访问和修改位段时,需要小心处理位操作,以避免错误。

5. 位段顺序:位段在内存中的存储顺序可能因编译器而异。有些编译器可能按照位段的定义顺序存储,而其他编译器可能按照相反的顺序存储。

6. 位段跨越字节边界:如果一个位段的大小超过了单个字节的位数,它将会被分割到两个字节中。这可能会导致难以预测的内存布局。

7. 位段的符号性:如果使用 `int` 类型定义位段,位段可能是带符号的。这意味着位段的最高位可能被解释为符号位,这可能会导致意外的行为。为了确保位段是无符号的,应该使用 `unsigned int` 类型。

8. 位段的访问:在某些平台上,访问位段可能比访问普通变量更慢,因为位段需要额外的位操作。

9. 位段的初始化和赋值:位段的初始化和赋值可能需要特殊的位操作,因为它们不是以字节为单位进行操作的。

10. 位段的限制:位段不能用于数组或指针,也不能用于结构体或联合体的嵌套定义。

在使用位段时,应该仔细考虑这些注意事项,并确保代码的可读性、可维护性和正确性。如果可能,应该考虑使用其他技术,如位掩码或位操作函数,来代替位段,以提高代码的可移植性和可读性。

OK,本节内容到此结束,支持小编的留下你的关注,评论和点赞吧!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/722910.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自建消息推送工具 Gotify 实现消息私有化通知

本文首发于只抄博客,欢迎点击原文链接了解更多内容。 前言 之前分享了如何通过 Webhook 将 VPS 与 NAS 上部署的应用消息推送到钉钉、飞书、企业微信,但是对于部分用户来说,可能因为以下种种原因,不方便使用常见的办公 IM 软件来进行消息推送: 消息涉及隐私敏感信息,不希…

11.6.k8s实战-节点扩缩容

目录 一&#xff0c;需求描述 二、集群缩容-节点下线 1&#xff0c;节点下线案例说明 2&#xff0c;查看现有节点 3&#xff0c;查看所有名称空间下的pod ​编辑4&#xff0c;驱逐下线节点的pod 5&#xff0c;驱逐后再次查看pod 6&#xff0c;驱逐pod后再次查看节点信息…

新书速览|Ubuntu Linux运维从零开始学

《Ubuntu Linux运维从零开始学》 本书内容 Ubuntu Linux是目前最流行的Linux操作系统之一。Ubuntu的目标在于为一般用户提供一个最新的、相当稳定的、主要由自由软件构建而成的操作系统。Ubuntu具有庞大的社区力量&#xff0c;用户可以方便地从社区获得帮助。《Ubuntu Linux运…

熟练一种编程语言再学另一种语言时,叠的是buff还是debuff?

在大多数情况下&#xff0c;尤其是对于广泛使用的高级编程语言&#xff0c;它们之间存在正向的相互促进作用&#xff0c;熟练使用一种语言后再去学习另一种语言&#xff0c;大概率能叠个buff。 首先&#xff0c;学习编程语言的基础是通用的&#xff0c;比如软硬件和网络基础、算…

iOS原生APP开发的技术难点

iOS原生APP开发的技术难点主要体现在以下几个方面&#xff0c;总而言之&#xff0c;iOS原生APP开发是一项技术难度较高的工作&#xff0c;需要开发者具备扎实的编程基础、丰富的开发经验和良好的学习能力。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xf…

shell中的条件判断

在Linux操作系统中如何是用条件判断语句&#xff0c; 如上图所示&#xff0c;先定义一个变量变量值&#xff0c;再使用test $a hello来判断式子的正确与否&#xff0c;当结果正确的时候返回0&#xff0c;当结果错误时候结果返回1&#xff0c;可以是用echo $? 来获取并打印输出…

AI大模型会如何颠覆手机?

导语&#xff1a;大模型在手机端的落地&#xff0c;不仅仅是AI进入人类生活的开始&#xff0c;也是行业发生颠覆&#xff0c;新老巨头进行更替的时刻。 将大模型变小&#xff0c;再塞进手机&#xff0c;会给人们的生活带来怎样的影响&#xff1f; 最近&#xff0c;荣耀成为了…

数据结构历年考研真题对应知识点(单链表、双链表、循环链表)

目录 2.3线性表的链式表示 2.3.1单链表的定义 【单链表的应用(2009、2012、2013、2015、2016、2019)】 2.3.2单链表上基本操作的实现 【单链表插入操作后地址或指针的变化(2016)】 2.3.3双链表 【双链表中插入操作的实现(2023)】 【循环双链表中删除操作的实现(2016)】 …

Ubuntu20.04部署Qwen2.openvino流程

下载代码 里面包含依赖 git clone https://github.com/OpenVINO-dev-contest/Qwen2.openvino.gitpython环境配置 创建虚拟环境 conda create -name qwen2openvino python3.10 conda activate qwen2openvino安装依赖 pip install wheel setuptools pip install -r requirem…

C# OCCT Winform 选中模型改变状态

选中状态设置 _context new AIS_InteractiveContext(_viewer);var selectionDrawer new Prs3d_Drawer();selectionDrawer.SetColor(Colors.Selection);selectionDrawer.SetDisplayMode(1);selectionDrawer.SetTransparency(0.1f);_context.SetSelectionStyle(selectionDrawe…

基于PHP的民宿管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的民宿管理系统 一 介绍 此民宿管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端jquery.js和echarts.js。系统角色分为用户和管理员。用户可以在线浏览和预订民宿&#xff0c;管理员登录后台进行相关管理等。(在系统…

【TB作品】MSP430G2553,单片机,口袋板, 单相交流电压、电流计设计

题5 单相交流电压、电流计设计 设计基于MSP430的单相工频交流电参数检测仪。交流有效值0-220V&#xff0c;电流有效值0-40A。电压、电流值经电压、电流传感器输出有效值为0-5V的交流信号&#xff0c;传感器输出的电压、电流信号与被测电压、电流同相位。 基本要求如下 &#xf…

前端网站(二)-- 菜单页面【附源码直接可用】

菜单页面 开篇&#xff08;请大家看完&#xff09;&#xff1a;此网站写给挚爱&#xff0c;后续页面还会慢慢更新&#xff0c;大家敬请期待~ ~ ~ 轻舟所编写这个前端框架的设计初衷&#xff0c;纯粹是为了哄对象开心。除此之外&#xff0c;并无其它任何用途或目的。 此前端框…

基于Java的二手手机回收平台系统

开头语&#xff1a; 你好呀&#xff0c;我是计算机学长猫哥&#xff01;如果有相关需求&#xff0c;文末可以找到我的联系方式。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;JavaJSPServlet 工具&#xff1a;IDEA/Eclipse、Navicat、Maven 系统展…

【C++提高编程-10】----C++ STL常用拷贝和替换算法

&#x1f3a9; 欢迎来到技术探索的奇幻世界&#x1f468;‍&#x1f4bb; &#x1f4dc; 个人主页&#xff1a;一伦明悦-CSDN博客 ✍&#x1f3fb; 作者简介&#xff1a; C软件开发、Python机器学习爱好者 &#x1f5e3;️ 互动与支持&#xff1a;&#x1f4ac;评论 &…

Chat-TTS chat-tts-ui 实机部署上手测试!Ubuntu服务器实机 2070Super*2 8GB部署全流程

项目介绍 开源的项目&#xff0c;感谢各位大佬的贡献&#xff01; 官方介绍&#xff1a;一个简单的本地网页界面&#xff0c;使用ChatTTS将文字合成为语音&#xff0c;同时支持对外提供API接口。A simple native web interface that uses ChatTTS to synthesize text into spe…

物联网技术-第3章物联网感知技术-3.3传感技术

目录 1.1什么是传感器 1.1.1生活中的传感器 1.1.2人的五官与传感器 1.1.3传感器的定义 1.1.4传感器的组成 1.2传感器的特性 1.2.1传感器的静态特征 1、灵敏度&#xff08;静态灵敏度&#xff09; 2.精度 3.线性度&#xff08;非线性误差&#xff09; 4.最小检测量&a…

SSRF服务端请求伪造

SSRF服务端请求伪造 SSRF漏洞原理 ​ SSRF(Server-Side Request Forgery:服务器端请求伪造) 一种由攻击者构造形成由服务端发起请求的一个安全漏洞;一般情况下&#xff0c;SSRF攻击的目标是从外网无法访问的内部系统。&#xff08;正是因为它是由服务端发起的&#xff0c;所…

大模型“诸神之战”,落地才是赛点

ChatGPT 诞生已经快一年&#xff0c;你还在与它对话吗&#xff1f; 有的人用来写报告、改代码&#xff0c;让它成为得力帮手&#xff1b;有的人却只是“调戏”个两三回&#xff0c;让它创作诗歌或故事&#xff0c;便不再“宠幸”。 根据网站分析工具 SimilarWeb 的数据&#…

护眼灯哪些牌子好?一文刨析护眼灯怎么选择!

护眼灯哪些牌子好&#xff1f;护眼台灯作为对抗视力挑战的一种方法&#xff0c;逐渐赢得了众多家长的青睐。这些台灯利用尖端光学技术&#xff0c;发出柔和且无刺激的照明&#xff0c;有助于保护眼睛不受伤害。它们不但可以调节亮度和色温&#xff0c;打造一个舒适且自然的阅读…