温湿度采集与OLED显示

目录

一、什么是软件I2C

二、什么是硬件I2C

三、STM32CubeMX配置

1、RCC配置

2、SYS配置

3、I2C1配置

3、I2C2配置

4、USART1配置

5、TIM1配置

6、时钟树配置

7、工程配置

四、设备链接

1、OLED连接

2、串口连接

3、温湿度传感器连接

五、每隔2秒钟采集一次温湿度数据,显示到OLED上,同时通过串口发送到上位机的“串口助手”软件

1、新建AHT20-21_DEMO_V1_3.c文件,代码如下

2、新建AHT20-21_DEMO_V1_3.h文件,代码如下

3、main.c文件

4、演示

参考链接


一、什么是软件I2C

        软件I2C(也称为Bit-Banging I2C)是一种通过软件方法实现I2C通信协议的方式。在没有专用硬件I2C接口的微控制器或系统中,开发者可以通过编程直接控制通用的数字输入/输出(GPIO)引脚的电平变化,来模拟I2C总线的时序信号,包括启动条件、停止条件、应答位、数据位等。

二、什么是硬件I2C

        硬件I2C是指微控制器或系统中集成的专用硬件模块,用于实现I2C(Inter-Integrated Circuit)通信协议。这个模块设计用来自动处理I2C总线的物理层和部分协议层的复杂时序,从而减轻主处理器(CPU)的负担并提高通信效率。

三、STM32CubeMX配置

1、RCC配置

2、SYS配置

3、I2C1配置

这里的I2C1用于连接AHT20温湿度传感器

3、I2C2配置

这里的I2C2用于连接OLED显示屏

4、USART1配置

这里的USART1连接串口

5、TIM1配置

6、时钟树配置

7、工程配置

四、设备链接

1、OLED连接

2、串口连接

3、温湿度传感器连接

五、每隔2秒钟采集一次温湿度数据,显示到OLED上,同时通过串口发送到上位机的“串口助手”软件

1、新建AHT20-21_DEMO_V1_3.c文件,代码如下

#include "main.h" 
#include "AHT20-21_DEMO_V1_3.h" 
#include "gpio.h"
#include "i2c.h"


void Delay_N10us(uint32_t t)
{
  uint32_t k;

   while(t--)
  {
    for (k = 0; k < 2; k++);//110
  }
}

void SensorDelay_us(uint32_t t)
{
		
	for(t = t-2; t>0; t--)
	{
		Delay_N10us(1);
	}
}

void Delay_4us(void)		
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
}
void Delay_5us(void)		
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);

}

void Delay_1ms(uint32_t t)		
{
   while(t--)
  {
    SensorDelay_us(1000);
  }
}


//void AHT20_Clock_Init(void)		
//{
//	RCC_APB2PeriphClockCmd(CC_APB2Periph_GPIOB,ENABLE);
//}

void SDA_Pin_Output_High(void)     
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
}

void SDA_Pin_Output_Low(void)  
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_RESET);
}

void SDA_Pin_IN_FLOATING(void)  
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}


void SCL_Pin_Output_High(void) 
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}

void SCL_Pin_Output_Low(void) 
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
}

void Init_I2C_Sensor_Port(void) 
{	
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);

	
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pin = GPIO_PIN_6;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
	
}
void I2C_Start(void)
{
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();
	SensorDelay_us(8);
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
}


void AHT20_WR_Byte(uint8_t Byte)
{
	uint8_t Data,N,i;	
	Data=Byte;
	i = 0x80;
	for(N=0;N<8;N++)
	{
		SCL_Pin_Output_Low(); 
		Delay_4us();	
		if(i&Data)
		{
			SDA_Pin_Output_High();
		}
		else
		{
			SDA_Pin_Output_Low();
		}	
			
    SCL_Pin_Output_High();
		Delay_4us();
		Data <<= 1;
		 
	}
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
}	


uint8_t AHT20_RD_Byte(void)
{
		uint8_t Byte,i,a;
	Byte = 0;
	SCL_Pin_Output_Low();
	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	
	for(i=0;i<8;i++)
	{
    SCL_Pin_Output_High();
		
		Delay_5us();
		a=0;
		
		//if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_15)) a=1;
		if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7)) a=1;
		Byte = (Byte<<1)|a;
		
		//SCL_Pin_Output_Low();
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
		Delay_5us();
	}
  SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	return Byte;
}


uint8_t Receive_ACK(void)
{
	uint16_t CNT;
	CNT = 0;
	SCL_Pin_Output_Low();	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);	
	while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7))  && CNT < 100) 
	CNT++;
	if(CNT == 100)
	{
		return 0;
	}
 	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	return 1;
}

void Send_ACK(void)		
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	SDA_Pin_Output_Low();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);
}

void Send_NOT_ACK(void)
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);		
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
    SDA_Pin_Output_Low();
	SensorDelay_us(8);
}

void Stop_I2C(void)
{
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
}

uint8_t AHT20_Read_Status(void)
{

	uint8_t Byte_first;	
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	return Byte_first;
}

uint8_t AHT20_Read_Cal_Enable(void)
{
	uint8_t val = 0;//ret = 0,
  val = AHT20_Read_Status();
	 if((val & 0x68)==0x08)
		 return 1;
   else  return 0;
 }

void AHT20_SendAC(void)
{

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xac);
	Receive_ACK();
	AHT20_WR_Byte(0x33);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

}

uint8_t Calc_CRC8(uint8_t *message,uint8_t Num)
{
	uint8_t i;
	uint8_t byte;
	uint8_t crc=0xFF;
  for(byte=0; byte<Num; byte++)
  {
    crc^=(message[byte]);
    for(i=8;i>0;--i)
    {
      if(crc&0x80) crc=(crc<<1)^0x31;
      else crc=(crc<<1);
    }
  }
        return crc;
}

void AHT20_Read_CTdata(uint32_t *ct)
{
	volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	 uint32_t RetuData = 0;
	uint16_t cnt = 0;
	AHT20_SendAC();
	Delay_1ms(80);	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		 }
	}
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_1th = AHT20_RD_Byte();
	Send_ACK();
	Byte_2th = AHT20_RD_Byte();
	Send_ACK();
	Byte_3th = AHT20_RD_Byte();
	Send_ACK();
	Byte_4th = AHT20_RD_Byte();
	Send_ACK();
	Byte_5th = AHT20_RD_Byte();
	Send_ACK();
	Byte_6th = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();

	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData;

}


void AHT20_Read_CTdata_crc(uint32_t *ct)
{
	volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	volatile uint8_t  Byte_7th=0;
	 uint32_t RetuData = 0;
	 uint16_t cnt = 0;
	// uint8_t  CRCDATA=0;
	 uint8_t  CTDATA[6]={0};
	
	AHT20_SendAC();
	Delay_1ms(80);
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))
		{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		}
	}
	
	I2C_Start();

	AHT20_WR_Byte(0x71);
	Receive_ACK();
	CTDATA[0]=Byte_1th = AHT20_RD_Byte();
	Send_ACK();
	CTDATA[1]=Byte_2th = AHT20_RD_Byte();
	Send_ACK();
	CTDATA[2]=Byte_3th = AHT20_RD_Byte();
	Send_ACK();
	CTDATA[3]=Byte_4th = AHT20_RD_Byte();
	Send_ACK();
	CTDATA[4]=Byte_5th = AHT20_RD_Byte();
	Send_ACK();
	CTDATA[5]=Byte_6th = AHT20_RD_Byte();
	Send_ACK();
	Byte_7th = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	
	if(Calc_CRC8(CTDATA,6)==Byte_7th)
	{
	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData;
		
	}
	else
	{
		ct[0]=0x00;
		ct[1]=0x00;
	}
}


void AHT20_Init(void)
{	
	Init_I2C_Sensor_Port();
	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xa8);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(10);

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xbe);
	Receive_ACK();
	AHT20_WR_Byte(0x08);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();
	Delay_1ms(10);
}
void JH_Reset_REG(uint8_t addr)
{
	
	uint8_t Byte_first,Byte_second,Byte_third;
	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(addr);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(5);
	I2C_Start();
	AHT20_WR_Byte(0x71);//
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_ACK();
	Byte_second = AHT20_RD_Byte();
	Send_ACK();
	Byte_third = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	
  Delay_1ms(10);
	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xB0|addr);
	Receive_ACK();
	AHT20_WR_Byte(Byte_second);
	Receive_ACK();
	AHT20_WR_Byte(Byte_third);
	Receive_ACK();
	Stop_I2C();
	
	Byte_second=0x00;
	Byte_third =0x00;
}

void AHT20_Start_Init(void)
{
	JH_Reset_REG(0x1b);
	JH_Reset_REG(0x1c);
	JH_Reset_REG(0x1e);
}


2、新建AHT20-21_DEMO_V1_3.h文件,代码如下

#ifndef _AHT20_DEMO_
#define _AHT20_DEMO_

#include "main.h"  

void Delay_N10us(uint32_t t);
void SensorDelay_us(uint32_t t);
void Delay_4us(void);		
void Delay_5us(void);		
void Delay_1ms(uint32_t t);	
void AHT20_Clock_Init(void);		
void SDA_Pin_Output_High(void)  ; 
void SDA_Pin_Output_Low(void);  
void SDA_Pin_IN_FLOATING(void);  
void SCL_Pin_Output_High(void); 
void SCL_Pin_Output_Low(void); 
void Init_I2C_Sensor_Port(void); 
void I2C_Start(void);		 
void AHT20_WR_Byte(uint8_t Byte); 
uint8_t AHT20_RD_Byte(void);
uint8_t Receive_ACK(void);   
void Send_ACK(void)	;	  
void Send_NOT_ACK(void);	
void Stop_I2C(void);	  
uint8_t AHT20_Read_Status(void);
uint8_t AHT20_Read_Cal_Enable(void);  
void AHT20_SendAC(void); 
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num);
void AHT20_Read_CTdata(uint32_t *ct); 
void AHT20_Read_CTdata_crc(uint32_t *ct); 
void AHT20_Init(void);   
void JH_Reset_REG(uint8_t addr);
void AHT20_Start_Init(void);


#endif

3、main.c文件

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "i2c.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
#include "u8g2.h"
#include "stdio.h"
#include "AHT20-21_DEMO_V1_3.h"
//温
static const unsigned char  wen[] =
{0x00,0x00,0xC4,0x1F,0x48,0x10,0x48,0x10,0xC1,0x1F,0x42,0x10,0x42,0x10,0xC8,0x1F,0x08,0x00,0xE4,0x3F,0x27,0x25,0x24,0x25,0x24,0x25,0x24,0x25,0xF4,0x7F,0x00,0x00};

//湿
static const unsigned char  shi[] ={0x00,0x00,0xE4,0x1F,0x28,0x10,0x28,0x10,0xE1,0x1F,0x22,0x10,0x22,0x10,0xE8,0x1F,0x88,0x04,0x84,0x04,0x97,0x24,0xA4,0x14,0xC4,0x0C,0x84,0x04,0xF4,0x7F,0x00,0x00};

//度	
static const unsigned char  du[] ={0x80,0x00,0x00,0x01,0xFC,0x7F,0x44,0x04,0x44,0x04,0xFC,0x3F,0x44,0x04,0x44,0x04,0xC4,0x07,0x04,0x00,0xF4,0x0F,0x24,0x08,0x42,0x04,0x82,0x03,0x61,0x0C,0x1C,0x70};

//待	
static const unsigned char  dai[]={0x10,0x02,0x10,0x02,0x08,0x02,0xC4,0x3F,0x12,0x02,0x10,0x02,0xE8,0x7F,0x0C,0x08,0x0A,0x08,0xE9,0x7F,0x08,0x08,0x48,0x08,0x88,0x08,0x88,0x08,0x08,0x0A,0x08,0x04};

//检	
static const unsigned char  jian[]={0x08,0x02,0x08,0x02,0x08,0x05,0x08,0x05,0xBF,0x08,0x48,0x10,0xAC,0x6F,0x1C,0x00,0x2A,0x11,0x0A,0x12,0x49,0x12,0x88,0x0A,0x88,0x08,0x08,0x04,0xE8,0x7F,0x08,0x00};

//测	
static const unsigned char  che[]={0x00,0x20,0xE4,0x23,0x28,0x22,0x28,0x2A,0xA1,0x2A,0xA2,0x2A,0xA2,0x2A,0xA8,0x2A,0xA8,0x2A,0xA4,0x2A,0xA7,0x2A,0x84,0x20,0x44,0x21,0x44,0x22,0x24,0x28,0x10,0x10};

	
	/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
	
//write by luobitaihuangzhang
	
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
int fputc(int ch,FILE *f){
	HAL_UART_Transmit(&huart1,(uint8_t *)&ch,1,0xffff);
	return ch;
}
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
	
 void oled_write(int temperature,int humidity){

	char t[5]; // 创建一个足够大的字符数组来存储转换后的数字
	char h[5];
 double t1=( double)temperature;
	double h1=(double)humidity;
  sprintf(t, "%.2f",t1/10 ); // 使用sprintf将int变量转换为字符串
	sprintf(h, "%.2f",h1/10);
	
	 u8g2_t u8g2;
  u8g2Init(&u8g2);	
	u8g2_ClearBuffer(&u8g2); 
	u8g2_SetFont(&u8g2,u8g2_font_ncenB12_tf);//设置字体格式
	u8g2_DrawXBMP(&u8g2,16,0,16,16,wen);//(参数顺序依次是,结构体、x、y、字宽、字高、储存要显示的字点阵的数组)
	u8g2_DrawXBMP(&u8g2,32,0,16,16,du);
	u8g2_DrawStr(&u8g2,48,16,":");
	u8g2_DrawXBMP(&u8g2,16,32,16,16,shi);
	u8g2_DrawXBMP(&u8g2,32,32,16,16,du);
	u8g2_DrawStr(&u8g2,48,48,":");
	u8g2_DrawUTF8(&u8g2,55,16,t);
	u8g2_DrawUTF8(&u8g2,55,48,h);
	
	u8g2_SendBuffer(&u8g2);
 }
 void oled_write_init(){
	u8g2_t u8g2;
  u8g2Init(&u8g2);	
	u8g2_ClearBuffer(&u8g2); 
	u8g2_SetFont(&u8g2,u8g2_font_ncenB12_tf);//设置字体格式
	u8g2_DrawXBMP(&u8g2,16,0,16,16,wen);//(参数顺序依次是,结构体、x、y、字宽、字高、储存要显示的字点阵的数组)
	u8g2_DrawXBMP(&u8g2,32,0,16,16,du);
	u8g2_DrawStr(&u8g2,48,16,":");
	u8g2_DrawXBMP(&u8g2,16,32,16,16,shi);
	u8g2_DrawXBMP(&u8g2,32,32,16,16,du);
	u8g2_DrawStr(&u8g2,48,48,":");
	u8g2_DrawXBMP(&u8g2,58,0,16,16,dai);
	u8g2_DrawXBMP(&u8g2,74,0,16,16,jian);
	u8g2_DrawXBMP(&u8g2,90,0,16,16,che);
	u8g2_DrawXBMP(&u8g2,58,32,16,16,dai);
	u8g2_DrawXBMP(&u8g2,74,32,16,16,jian);
	u8g2_DrawXBMP(&u8g2,90,32,16,16,che);
	u8g2_SendBuffer(&u8g2);
 }
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
	uint32_t CT_data[2]={0,0};
	volatile int  c1,t1;
	Delay_1ms(500);
	
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_I2C2_Init();
  MX_USART1_UART_Init();
  MX_I2C1_Init();
  MX_TIM1_Init();
	
	//初始化AHT20
	AHT20_Init();
	Delay_1ms(500);
	u8g2_t u8g2;
  u8g2Init(&u8g2);
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
	oled_write_init();
  while (1)
  {
    /* USER CODE END WHILE */
/* USER CODE END WHILE */
		AHT20_Read_CTdata(CT_data);       //不经过CRC校验,直接读取AHT20的温度和湿度数据    推荐每隔大于1S读一次
		//AHT20_Read_CTdata_crc(CT_data);  //crc校验后,读取AHT20的温度和湿度数据 
	

		c1 = CT_data[0]*1000/1024/1024;  //计算得到湿度值c1(放大了10倍)
		t1 = CT_data[1]*2000/1024/1024-500;//计算得到温度值t1(放大了10倍)
		printf("\r\n");
		HAL_Delay(1000);
		printf("温度:%d%d.%d",t1/100,(t1/10)%10,t1%10);
		printf("湿度:%d%d.%d",c1/100,(c1/10)%10,c1%10);
		printf("\r\n");
		printf("等待");
		printf("\r\n");
		HAL_Delay(1000);
		oled_write(t1,c1);
  /* USER CODE END 3 */
  }
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

4、演示

温湿度采集,OLED显示

参考链接

1、STM32F103基于I2C协议的AHT20温湿度传感器的数据采集_dht20程序-CSDN博客

2、IIC原理超详细讲解---值得一看-CSDN博客

3、温湿度采集与OLED显示-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/721499.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

jquey+mybatis-plus实现简单分页功能

这篇文章介绍一下怎么通过JQuery结合mybatis-plus的分页插件实现原生HTML页面的分页效果&#xff0c;没有使用任何前端框架&#xff0c;主要是对前端知识的应用。 创建Springboot项目 Intellij IDEA中创建一个Springboot项目&#xff0c;项目名为pager。 添加必须的依赖包 修…

Linux安装Tomcat和Nginx

目录 前言一、系统环境二、Tomcat安装步骤Step1 安装JDK环境Step2 安装Tomcat 三、Nginx安装步骤四、测试4.1 测试Tomcat4.2 测试Nginx 总结 前言 本篇文章介绍如何在Linux上安装Tomcat web服务器。 一、系统环境 虚拟机版本&#xff1a;VMware Workstation 15 ProLinux镜像…

Java基础 - 练习(二)打印菱形

Java基础练习 打印菱形&#xff0c;先上代码&#xff1a; // 方法一&#xff1a;基础&#xff0c;好理解 public static void diamond() {//控制行数for (int i 1; i < 4; i) {//空格的个数for (int k 1; k < 4 - i; k) {System.out.print(" ");}//控制星星…

链表OJ--超详细解析

链表OJ 文章目录 链表OJ1. 反转链表2. 返回K值3. 链表的中间节点4. 回文链表5. 相交链表6. 带环链表6.1 为什么一定会相遇&#xff0c;有没有可能会错过&#xff0c;或者出现永远追不上的情况&#xff0c;请证明6.2 slow一次走一步&#xff0c;fast如果一次走3步&#xff0c;走…

解决nvm切换node版本后,全局依赖无法使用

问题描述 使用 nvm install 10.24.1 安装node版本&#xff0c;安装成功后&#xff0c;使用 npm install -g xxx 安装全局依赖&#xff08;私有库&#xff09;&#xff0c;安装成功后&#xff0c;运行命令提示找不到命令。 已做以下尝试 npm root -g&#xff0c;返回 D:\Prog…

【Java面试】二十、JVM篇(上):JVM结构

文章目录 1、JVM2、程序计数器3、堆4、栈4.1 垃圾回收是否涉及栈内存4.2 栈内存分配越大越好吗4.3 方法内的局部变量是否线程安全吗4.4 栈内存溢出的情况4.5 堆和栈的区别是什么 5、方法区5.1 常量池5.2 运行时常量池 6、直接内存 1、JVM Java源码编译成class字节码后&#xf…

window端口占用情况及state解析

背景&#xff1a; 在电脑使用过程中&#xff0c;经常会开许多项目&#xff0c;慢慢地发现电脑越来越卡&#xff0c;都不知道到底是在跑什么项目导致&#xff0c;于是就想查看一下电脑到底在跑什么软件和项目&#xff0c;以作记录。 常用命令 netstat -tuln &#xff1a; 使用…

这些已经死去的软件,依旧无可替代

互联网这条长河里&#xff0c;软件们就像流星一样&#xff0c;一闪而过。有的软件火过一段时间&#xff0c;然后就慢慢消失了。 说不定有些软件你以前天天用&#xff0c;但不知道从什么时候开始就不再用了。时间一天天过去&#xff0c;我们的热情、记忆都在消退&#xff0c;还…

【免费API推荐】: 解锁创意无限,享受免费开发之旅

幂简网站上免费的 API 分类内汇集了各种各样的免费 API&#xff0c;涵盖了多个领域和功能。无论你是在构建网站、开发应用还是进行数据分析&#xff0c;这个项目都能为你提供丰富的选择。 幂简集成搜集了网络上免费的 API 资源&#xff0c;为广大开发者和创业者提供便捷的访问渠…

在Linux中安装中文编程语言洛书

本次安装使用的VMware中的Ubuntu系统虚拟机&#xff0c;尝试下中文编程。 安装洛书 下载官网&#xff1a;洛书——打造开源高效强大的国产编程语言 官方文档&#xff1a;洛书文档中心 (losu.tech) 点击获取 在终端中安装工具 dpkg和rlwrap&#xff1a; sudo apt install d…

服务器数据恢复—NTFS文件系统下双循环riad5数据恢复案例

服务器存储数据恢复环境&#xff1a; EMC CX4-480存储&#xff0c;该存储中有10块硬盘&#xff0c;其中有3块磁盘为掉线磁盘&#xff0c;另外7块磁盘组成一组RAID5磁盘阵列。运维人员在处理掉线磁盘时只添加新的硬盘做rebuild&#xff0c;并没有将掉线的硬盘拔掉&#xff0c;所…

《失败的逻辑》|别再无效复盘了!学会认清每一次失败的必然性

为什么铁路信号系统工作正常时&#xff0c;列车仍然会发生撞车事故&#xff1f; 为什么所有操作人员都警觉地坚守着工作岗位&#xff0c;核反应堆依然会发生灾难性的熔化事故&#xff1f; 为什么我们制定得甚好的那么多专业和个人计划&#xff0c;会如此频繁地出岔子&#xff1…

RoaringBitMap处理海量数据内存diff

一、背景 假设mysql库中有一张近千万的客户信息表(未分表)&#xff0c;其中有客户性别&#xff0c;等级(10个等级)&#xff0c;参与某某活动等字段 1、如果要通过等级性别其他条件(离散度也低)筛选出客户&#xff0c;如何处理查询&#xff1f; 2、参与活动是记录活动ID&#…

NVIDIA新模型Nemotron-4:98%的训练数据是合成生成的,你敢信?

获取本文论文原文PDF&#xff0c;请公众号 AI论文解读 留言&#xff1a;论文解读 标题&#xff1a;Nemotron-4 340B Technical Report 模型概述&#xff1a;Nemotron-4 340B系列模型的基本构成 Nemotron-4 340B系列模型包括三个主要版本&#xff1a;Nemotron-4-340B-Base、…

RNN的变种们:GRULSTM双向RNN

上篇笔记记录到RNN的一个缺点&#xff1a;训练时会出现梯度消失&#xff0c;解决的办法是找到一个更优的计算单元。这里也有GRU和LSTM。 GRU&#xff08;Gated Recurrent Unit&#xff09;门控训练网络 什么是门控机制&#xff1f;就是对当前的输入进行一个筛选。门打开&…

《UNIX环境高级编程》第三版(电子工业出版社出品)——两年磨一剑的匠心译作

历时两年&#xff0c;《UNIX环境高级编程》的翻译工作终于落下帷幕。这一路走来&#xff0c;真可谓是如鱼饮水&#xff0c;冷暖自知。还记得最初看到招募译者消息的那一刻&#xff0c;内心的激动难以言表。我毫不犹豫地报名&#xff0c;而后经历了试译、海选等激烈的角逐&#…

「TCP 重要机制」滑动窗口 粘包问题 异常情况处理

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;计网 &#x1f387;欢迎点赞收藏加关注哦&#xff01; 滑动窗口&粘包问题&异常情况处理 &#x1f349;滑动窗口&#x1f34c;流量控制&#x1f34c;拥塞控制&#x1f34c;延时应答&…

mkv文件怎么转成mp4?教你四种常见的转换方法!

mkv文件怎么转成mp4&#xff1f;大家在使用mkv文件的时候有没有遇到过下面这些缺点&#xff0c;首先是mkv的兼容性不行&#xff0c;这体验在它不方便分享上面&#xff0c;很有可能我们分享出去但是对方根本无法进行接受&#xff0c;这就导致我们需要进行额外的操作才能分享&…

轻轻松松上手的LangChain学习说明书

本文为笔者学习LangChain时对官方文档以及一系列资料进行一些总结&#xff5e;覆盖对Langchain的核心六大模块的理解与核心使用方法&#xff0c;全文篇幅较长&#xff0c;共计50000字&#xff0c;可先码住辅助用于学习Langchain。 一、Langchain是什么&#xff1f; 如今各类AI…

pip导出格式错乱问题

pip导出带有各种路径 pip只导出版本 pip list | tail -n 3 | awk {print $1""$2} > requirements.txt