从一到无穷大 #10 讨论 Apache IoTDB 大综述中看到的优劣势

在这里插入图片描述本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。

本作品 (李兆龙 博文, 由 李兆龙 创作),由 李兆龙 确认,转载请注明版权。

文章目录

  • 引言
  • 问题定义
  • 新技术
    • 数据模型
    • schemaless
    • Tsfile设计
    • 双MemTable
    • 高级可扩展查询
    • 其他
  • IotDB劣势
  • influxDB 1.x 劣势
  • 结束语

引言

在时序数据库这样一个小众的圈子里面每年有意思的东西并不多,每一篇顶会paper都值得细细品读。其次靠自己想很多问题很难解决,还是需要向业界优秀的团队虚心学习,才能清除和增加自己产品的核心竞争力。

问题定义

如下图是《Apache IoTDB: A Time Series Database for IoT Applications》中提出的一个典型场景:
请添加图片描述

  1. 边缘设备(时序数据的产生点)
  2. 边缘服务器中需要一个用于写入,存储和查询的数据库
  3. 云端的计算集群,用于OLAP分析

文章开篇指出了IotDB聚焦的问题,即:

  1. 不断变化的模式,即对于SchemaLess的支持(传感器经常被替换,移除,新增)
  2. 周期性的数据采集
  3. 强相关的series(利用2,3可以增加压缩的可能性)
  4. 多样化延迟数据的写入
  5. 高并发的数据写入

其次在优雅的解决这些问题能保证查询上做到:

  1. 一天之内10万数据点的selection在100ms
  2. 三年之内1000万数据点的aggregation在100ms

新技术

数据模型

InfluxDB中measurement+tags+fields的数据模型基本已经成为现实标准,但是IotDB认为这样的模型对于设备和传感器进行管理难以优化物理存储,遂使用树形管理所有的时间序列。

请添加图片描述
iotDB使用Sensor+Device管理所有的时间序列

物理模式如下:

  1. Time Series:每一条根节点到叶子结点是一个时间序列
  2. Series Family:一个设备的时间序列存储在一个tsfile中,一个tsfile中可以存储多个设备的时间序列,每一个 Series Family有一个独立的存储引擎,所有的tsfile存储在一个目录中

这样的优势我理解是可以控制哪些设备处于一个Series Family中,进而利用周期性和强相关的数据执行更有效的数据压缩。

schemaless

[12]中描述了iotdb的方案,后续有时间看下,influxdb的方案就很简单,不知道有什么区别。

Tsfile设计

在这里插入图片描述

  1. page:基本存储单位,一个page属于一个时间序列,其中存储两列,即时间和filed
  2. chunk:由metadata+多个page组成,所有page都属于一个时间序列
  3. chunk group:由metadata+多个chunk组成,所有的chunk属于一个或多个时间序列。多个chunk放在一起的原因文章中提到是一个设备所属的多个传感器一般被同时访问,
  4. index:很巧妙的组织形式,可以很快的索引某个时间序列的所有chunk信息,并且携带时间序列的统计信息,比如count,begin,end等,用于查询优化

本质上和TSM存储格式差不多,但是因为TSM是KV模型,依赖于TSI获取完整的seriesID,在这之中还需要在series file中获取时机的serieskey,这就很慢了。这也是现代时序数据库均使用Parquet,tsfile这样存储模型的原因,不仅导入导出方便,摆脱了倒排索引的依赖。

双MemTable

本质要解决的问题就是乱序数据会使得tsfile的时间区间存在重复,但是这只适用于乱序数据较少的情况,此时会有益于查询和写放大;否则会退化为普通版本,还增加了维护的开销。请添加图片描述在iotdb遇到的场景下,长延时只有0.0375%;但是在我们当前的场景中,乱序数据是常态;其次influxdb内数据的写入其实是在TSM,每个memtable中包含的是kv数据,就算乱序到达也只不过是查询时需要在level0中的多扫几个块罢了;
[10]中提到了可以通过数据的到达情况自动判断是否分裂,这对于iodDB来说确实是一种很好的思路。

高级可扩展查询

这几乎是领域龙头做的最好的一个方向了,因为这里非常偏学术,无论是DolphinDB还是IotDB对于各类特殊场景的算子支持都强于公有云厂商。

  1. 模式匹配算子PATTERN[2]
  2. 异常检测函数[3]
  3. 数据估算函数,用于填补空缺值[4][5]
  4. 用户自定义函数(UDF),用于特定领域个性化计算的需求;在查询引擎中算子的处理都是迭代器化的,这个其实我们也可以加,但是现阶段来看需求并不强烈,没必要透漏给用户这个接口。

其他

  1. 高效的数据传输,可以在边缘设备,边缘服务器和云端之间导入,不需要昂贵的ETL。这其实不是IotDB独有的优势,本质上只要存储层是独立可解释的文件就有这个优势,单很可惜inlfuxDB1.x不是,这也是InfluxData推动InfluxDBiox的关键动机之一。
  2. 高效的压缩能力,这其实是核心要解决的问题中周期性以及强相关数据的具体优化方式,在[6]中阐述了各种数据类型压缩的方式,iotdb也研究出了一些巧妙的压缩方式[7][8][9],也证明了一般时序数据库中默认(比如influxdb)的Timestamp: Delta → Scaling → (RLE/Simple8b); Float:XOR;Integer:ZigZag → (Simple8b/RLE/Uncompress);Boolean:Bit-packing;并不是最优的解决方案。但是这并不是IotDB独有的方案,理论上只需要一个实习生任意一个系统都可以具备这样的优势。其次存储目前从经验来看并不是运营中最大的问题,工程不是学术,在压缩率已经达到要求的情况下没有必要过度优化。

IotDB劣势

  1. 分布式系统设计历史气息浓厚,这带来的直接差异我能想到的有:元数据管理节点存在单点,集群规模TB级别,不适用于公有云,只适合于私有云,这也导致了价钱不会太便宜
  2. 聚焦于Iot场景,可以说把无损压缩做到了极致,但是现在SSD并不贵,以我们的运营经验来看存储不是瓶颈。优势带来的劣势时时间线较多的场景无法处理,因为tsfile中的树形索引基本失效,每一个series都是一个根节点。
  3. java编写,我猜测和influxdb1.x一样存在full gc的问题,基本无法解决;
  4. TSQL能力弱于influxql和SQL

influxDB 1.x 劣势

  1. 不支持SQL
  2. 基数无法无限扩展(国内目前TDengine以外其他大厂的时序数据库仔细看都存在时间线限制)
  3. 存算不分离(开源没有集群版),导致隔离很难做[13],基本上是无解的(也有办法,不过实施比较复杂),所以只能在运营角度规避这个问题
  4. go实现,且实现的不严谨,导致内存问题很严重;显然Rust/cpp才是最好的引擎语言
  5. 应该允许在没有本地存储的情况下运行,但是内部实现大量使用mmap(建议大家都看看[14])
  6. 索引数据分离,导致导入导出极为困难
  7. Highly indexed,导致写操作较为繁琐且昂贵,可能需要更新两个索引和一个数据
  8. 查询多时间线时极为昂贵,tsi中需要消耗大量的时间,因为需要对所有的查询条件的结果集做并集,并在seriesfile中查询series key,[15]也提到拆分索引是没有用的,查询的时间线客观存在,拆分索引还会造成内存问题,因为维护索引信息也需要不少内存
  9. 时间线较多时索引信息大于数据,但是时序的场景导致很多索引自始至终是无法被使用的

结束语

跟着老大InfluxDB IOX走基本上没有错,其他的路都是徒劳。
在这里插入图片描述

参考:

  1. Announcing InfluxDB IOx - The Future Core of InfluxDB Built with Rust and Arrow
  2. Kv-match: A subsequence matching approach supporting normalization and time warping icde2019
  3. Time series data cleaning: From anomaly detection to anomaly repairing vldb2017
  4. Sequential data cleaning: A statistical approach sigmod2016
  5. SCREEN: stream data cleaning under speed constraints sigmod2015
  6. Time series data encoding for efficient storage: A comparative analysis in apache iotdb vldb2022
  7. On aligning tuples for regression KDD22
  8. Grouping time series for efficient columnar storage sigmod2023
  9. Frequency domain data encoding in apache iotdb vldb2022
  10. Separation or not: On handing out-of-order time-series data in leveled lsm-tree icde2022
  11. Non-blocking raft for high throughput iot data icde2023
  12. Swapping repair for misplaced attribute values icde2020
  13. 从一到无穷大 #7 Database-as-a-Service租户隔离挑战与解决措施
  14. Are You Sure You Want to Use MMAP in Your Database Management System?
  15. The Design of InfluxDB IOx: In-Memory Columnar Database Written in Rust with Apache Arrow (Paul Dix)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/72032.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【VSCode】报错:出现段错误解决办法 (Segmentation fault)

VScode报错:Segmentation fault (core dumped)的解决办法 解决Program received signal SIGSEGV, Segmentation fault.的辛酸 Linux环境下段错误的产生原因及调试方法小结 Linux下的段错误Segmentationfault产生的原因及调试方法经典.pdf 在程序中,TF…

Python-OpenCV中的图像处理-傅里叶变换

Python-OpenCV中的图像处理-傅里叶变换 傅里叶变换Numpy中的傅里叶变换Numpy中的傅里叶逆变换OpenCV中的傅里叶变换OpenCV中的傅里叶逆变换 DFT的性能优化不同滤波算子傅里叶变换对比 傅里叶变换 傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变…

面试总结-webpack/git

说说你对webpack的理解 webpack 是一个静态模块打包器,整个打包过程就像是一条生产线,把资源从入口放进去,经过一系列的加工(loader),最终转换成我们想要的结果,整个加工过程还会有监控&#x…

pytest 用例运行方式

一、命令行方式运行 执行某个目录下所有的用例,符合规范的所有用例 进入到对应的目录,直接执行pytest; 例如需要执行testcases 下的所有用例; 可以进入testcases 目录; 然后执行pytest 进入对应目录的上级目录,执行pytest 目录名称/ ; ; 例如需要执行testcases 下…

【rust/egui】(二)看看template的main函数:日志输出以及eframe run_native

说在前面 rust新手,egui没啥找到啥教程,这里自己记录下学习过程环境:windows11 22H2rust版本:rustc 1.71.1egui版本:0.22.0eframe版本:0.22.0上一篇:这里 开始 首先让我们看看main.rs中有些什么…

ROS2 学习(一)介绍,环境搭建,以及个人安装的一些建议

ROS2 学习 学习自b站课程:https://www.bilibili.com/video/BV16B4y1Q7jQ?p1 (up主:古月居GYH) ROS 介绍 Robot OS,为机器人开发提供了相对完善的 middleware,工具,软件等。 ROS1 对嵌入式设…

Qt6之QListWidget——Qt仿ToDesk侧边栏(1)

一、 QLitWidget概述 注意:本文不是简单翻译Qt文档或者接口函数,而侧重于无代码Qt设计器下演示使用。 QListWidget也称列表框类,它提供了一个类似于QListView提供的列表视图,但是它具有一个用于添加和删除项的经典的基于项的接口…

jupyter切换conda虚拟环境

环境安装 conda install nb_conda 进入你想使用的虚拟环境: conda activate your_env_name 在你想使用的conda虚拟环境中: conda install -y jupyter 在虚拟环境中安装jupyter: conda install -y jupyter 重启jupyter 此时我们已经把该安装…

yolov5部署 单线程与多线程对比

单线程 部署代码可参考&#xff1a; Yolov5 ONNX Runtime 的 C部署_爱钓鱼的歪猴的博客-CSDN博客 main.cpp #include "detector.h" #include <chrono> using namespace std;// 识别线程 void *detect_thread_entry(void *para){}int main(int argc, char *ar…

【正版系统】2023热门短剧SAAS版开源 | 小程序+APP+公众号H5

当我们在刷百度、D音、K手等各种新闻或短视频时经常会刷到剧情很有吸引力的短剧广告&#xff0c;我们点击广告链接即可进入短剧小程序&#xff0c;小程序运营者通过先免费看几集为诱耳然后在情节高潮时弹出充值或开VIP会员才能继续看的模式来赚钱&#xff0c;以超级赘婿、乡村小…

HTML5 基础标签

目录 前言 标题标签 段落标签 换行标签和水平线标签 文本格式化标签 图像标签 超链接标签 多媒体标签 列表标签 无序列表 有序列表 表格 合并单元格 表单 无语义的布局标签 字符实体 前言 当今互联网时代&#xff0c;网页是我们获取信息、交流和展示自己的重要渠…

【RocketMQ入门-安装部署与Java API测试】

【RocketMQ入门-安装部署与Java API测试】 一、环境说明二、安装部署三、Java API 编写Producer和Consumer进行测试四、小结 一、环境说明 虚拟机VWMare&#xff1a;安装centos7.6操作系统源码包&#xff1a;rocketmq-all-5.1.3-source-release.zip单master部署&#xff0c;在…

如何微调优化你的ChatGPT提示来提高对话质量

ChatGPT会话质量很大程度上取决于微调优化提示的艺术。本文旨在阐明微调提示的复杂性&#xff0c;以确保你可以充分发挥ChaGPT这一颠覆性工具的潜力。 与ChatGPT对话的关键部分是“提示”。即&#xff1a;你输入的问题或陈述&#xff0c;它决定了人工智能的响应。类似于引导对…

软件测试基础篇——Docker

1、docker技术概述 docker描述&#xff1a;docker是一项虚拟化的容器技术&#xff08;类似于虚拟机&#xff09;&#xff0c;docker技术给使用者提供一个平台&#xff0c;在该平台上可以利用提供的容器&#xff0c;对每一个应用程序进行单独的封装隔离&#xff0c;每一个应用程…

Blender如何给fbx模型添加材质贴图并导出带有材质贴图的模型

推荐&#xff1a;使用 NSDT场景编辑器快速助你搭建可二次编辑的3D应用场景 此教程适合新手用户&#xff0c;专业人士直接可直接绕路。 本教程中介绍了利用Blender建模软件&#xff0c;只需要简单几步就可以为模型添加材质贴&#xff0c;图&#xff0c;并且导出带有材质的模型文…

netty基础与原理

Netty线程模型和Reactor模式 简介&#xff1a;reactor模式 和 Netty线程模型 设计模式——Reactor模式&#xff08;反应器设计模式&#xff09;&#xff0c;是一种基于 事件驱动的设计模式&#xff0c;在事件驱动的应用中&#xff0c;将一个或多个客户的 服务请求分离&#x…

Verilog求log10和log2近似

Verilog求log10和log2近似 Verilog求10对数近似方法&#xff0c;整数部分用位置index代替&#xff0c;小数部分用查找表实现 参考&#xff1a; Verilog写一个对数计算模块Log2(x) FPGA实现对数log2和10*log10

【LangChain学习】基于PDF文档构建问答知识库(三)实战整合 LangChain、OpenAI、FAISS等

接下来&#xff0c;我们开始在web框架上整合 LangChain、OpenAI、FAISS等。 一、PDF库 因为项目是基于PDF文档的&#xff0c;所以需要一些操作PDF的库&#xff0c;我们这边使用的是PyPDF2 from PyPDF2 import PdfReader# 获取pdf文件内容 def get_pdf_text(pdf):text "…

SQL常见命令语句

1.连接数据库 mysql (-h IP) -u root -p 密码2.查看数据库 show databases3.使用数据库 use db_name4.查看表 show tables [from db_name]5.查看表结构 desc tb_name6.创建、删除、选择数据库 create database db_namedrop database db_nameuse db_name7.数据类型 参考链…

技术应用:Docker安全性的最佳实验|聊聊工程化Docker

&#x1f525; 技术相关&#xff1a;《技术应用》 ⛺️ I Love you, like a fire! 文章目录 首先&#xff0c;使用Docker Hub控制访问其次&#xff0c;保护密钥写在最后 不可否认&#xff0c;能生存在互联网上的软件都是相互关联的&#xff0c;当我们开发一款应用程序时&#x…