Android网络性能监控方案 android线上性能监测

1 Handler消息机制
这里我不会完整的从Handler源码来分析Android的消息体系,而是从Handler自身的特性引申出线上卡顿监控的策略方案。

1.1 方案确认
首先当我们启动一个App的时候,是由AMS通知zygote进程fork出主进程,其中主进程的入口就是ActivityThread的main方法,在这个方法中开启Loop死循环来处理系统消息。

Looper.loop();
1.
在ActivityThread中,有一个内部类ApplicationThread,这个类是system_server的一个代理对象,负责App主进程与system_server进程的通信(如果对这块有疑问的,可以看之前的文章都有详细的介绍)。

private class ApplicationThread extends IApplicationThread.Stub {
    private static final String DB_INFO_FORMAT = "  %8s %8s %14s %14s  %s";

    @Override
    public final void bindApplication(String processName, ApplicationInfo appInfo,
            ProviderInfoList providerList, ComponentName instrumentationName,
            ProfilerInfo profilerInfo, Bundle instrumentationArgs,
            IInstrumentationWatcher instrumentationWatcher,
            IUiAutomationConnection instrumentationUiConnection, int debugMode,
            boolean enableBinderTracking, boolean trackAllocation,
            boolean isRestrictedBackupMode, boolean persistent, Configuration config,
            CompatibilityInfo compatInfo, Map services, Bundle coreSettings,
            String buildSerial, AutofillOptions autofillOptions,
            ContentCaptureOptions contentCaptureOptions, long[] disabledCompatChanges,
            SharedMemory serializedSystemFontMap) {
        if (services != null) {
            if (false) {
                // Test code to make sure the app could see the passed-in services.
                for (Object oname : services.keySet()) {
                    if (services.get(oname) == null) {
                        continue; // AM just passed in a null service.
                    }
                    String name = (String) oname;

                    // See b/79378449 about the following exemption.
                    switch (name) {
                        case "package":
                        case Context.WINDOW_SERVICE:
                            continue;
                    }

                    if (ServiceManager.getService(name) == null) {
                        Log.wtf(TAG, "Service " + name + " should be accessible by this app");
                    }
                }
            }

            // Setup the service cache in the ServiceManager
            ServiceManager.initServiceCache(services);
        }

        setCoreSettings(coreSettings);

        AppBindData data = new AppBindData();
        data.processName = processName;
        data.appInfo = appInfo;
        data.providers = providerList.getList();
        data.instrumentationName = instrumentationName;
        data.instrumentationArgs = instrumentationArgs;
        data.instrumentationWatcher = instrumentationWatcher;
        data.instrumentationUiAutomationConnection = instrumentationUiConnection;
        data.debugMode = debugMode;
        data.enableBinderTracking = enableBinderTracking;
        data.trackAllocation = trackAllocation;
        data.restrictedBackupMode = isRestrictedBackupMode;
        data.persistent = persistent;
        data.config = config;
        data.compatInfo = compatInfo;
        data.initProfilerInfo = profilerInfo;
        data.buildSerial = buildSerial;
        data.autofillOptions = autofillOptions;
        data.contentCaptureOptions = contentCaptureOptions;
        data.disabledCompatChanges = disabledCompatChanges;
        data.mSerializedSystemFontMap = serializedSystemFontMap;
        sendMessage(H.BIND_APPLICATION, data);
    }
}

我们可以看到,每个方法的最后,其实都是调用了sendMessage方法,通过Handler发送消息;为啥会用到Handler呢,是因为App进程与system_server进程通信是通过Binder实现的,Binder会开辟Binder线程池,那么此时这个方法的调用是在子线程中完成,像bindApplication最终需要调用Application的onCreate方法,但这个方法是在主线程中,因此需要Handler完成线程切换。

所以整个App消息体系都是通过Handler来支持起来的,看下图

因为Android对于消息的时效性要求非常高,需要一个高速执行的状态,一旦有消息执行耗时造成阻塞就会产生卡顿,所以通过Handler来监听消息的执行速度,通过设定阈值判断是否产生卡顿,从而获取堆栈消息来定位问题。

1.2 Looper源码
我们先去看下Looper源码,看如何处理分发消息的

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    if (me.mInLoop) {
        Slog.w(TAG, "Loop again would have the queued messages be executed"
                + " before this one completed.");
    }

    me.mInLoop = true;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    // Allow overriding a threshold with a system prop. e.g.
    // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
    final int thresholdOverride =
            SystemProperties.getInt("log.looper."
                    + Process.myUid() + "."
                    + Thread.currentThread().getName()
                    + ".slow", 0);

    me.mSlowDeliveryDetected = false;
    /**在这里开启死循环*/
    for (;;) {
        if (!loopOnce(me, ident, thresholdOverride)) {
            return;
        }
    }
}

在Looper的loop方法中,开启一个死循环,然后调用了loopOnce方法

private static boolean loopOnce(final Looper me,
        final long ident, final int thresholdOverride) {
        /**第一步,从MessagQueue中取出消息*/
    Message msg = me.mQueue.next(); // might block
    if (msg == null) {
        // No message indicates that the message queue is quitting.
        return false;
    }

    // This must be in a local variable, in case a UI event sets the logger
    /**这里关注下这个打点信息*/
    final Printer logging = me.mLogging;
    if (logging != null) {
        logging.println(">>>>> Dispatching to " + msg.target + " "
                + msg.callback + ": " + msg.what);
    }

    try {
        /**第二步,调用Handler的dispatchMessage方法*/
        msg.target.dispatchMessage(msg);
        if (observer != null) {
            observer.messageDispatched(token, msg);
        }
        dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
    } catch (Exception exception) {
        if (observer != null) {
            observer.dispatchingThrewException(token, msg, exception);
        }
        throw exception;
    } finally {
        ThreadLocalWorkSource.restore(origWorkSource);
        if (traceTag != 0) {
            Trace.traceEnd(traceTag);
        }
    }
    //......
    /**消息执行完成的打点*/
    if (logging != null) {
        logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
    }

    return true;
}

这里我们需要关注的有两个点:

(1)看消息是如何被分发执行的,在注释中,我标注了关键的二步;

(2)从消息被执行之前,到消息执行之后,有两处打点信息分别为:Dispatching to和Finished to,这个就是代表消息执行的整个过程,如果我们能够拿到这两段之间的耗时,是不是就可以完成我们的方案策略。

通过源码我们可以看到,这个Printer是我们可以自定义传入的,那也就是说,我们可以在我们自定义的Printer中插入计时的代码,就可以监控每个消息执行的耗时了。

public void setMessageLogging(@Nullable Printer printer) {
    mLogging = printer;
}

1.3 Blockcanary原理分析
所以根据上面的源码分析,业内有一款适用于卡顿监控的组件 - Blockcanary

implementation 'com.github.markzhai:blockcanary-android:1.5.0'

使用方式:

BlockCanary.install(this, BlockCanaryContext()).start()

所以我们看一下Blockcanary的源码,它的思想就是我们提到的通过setMessageLogging方法注入自己的代码。

public void start() {
    if (!mMonitorStarted) {
        mMonitorStarted = true;
        Looper.getMainLooper().setMessageLogging(mBlockCanaryCore.monitor);
    }
}

在start方法中,就是调用了setMessageLogging方法,传入了一个Printer对象,这个实现类就是LooperMonitor,其中需要实现println方法.

class LooperMonitor implements Printer {

    @Override
    public void println(String x) {
        if (mStopWhenDebugging && Debug.isDebuggerConnected()) {
            return;
        }
        /** mPrintingStarted 默认false */
        if (!mPrintingStarted) {
            mStartTimestamp = System.currentTimeMillis();
            mStartThreadTimestamp = SystemClock.currentThreadTimeMillis();
            mPrintingStarted = true;
            startDump();
        } else {
            final long endTime = System.currentTimeMillis();
            mPrintingStarted = false;
            if (isBlock(endTime)) {
                notifyBlockEvent(endTime);
            }
            stopDump();
        }
    }

    private boolean isBlock(long endTime) {
        return endTime - mStartTimestamp > mBlockThresholdMillis;
    }
 }

我们知道,在Looper的loop方法中,会调用两次print方法,所以在第一次调用println方法的时候,会记录一个系统时间;第二次进入的时候,会再次记一次系统时间,前后两次时间差如果超过一个阈值mBlockThresholdMillis,那么认为是发生了卡顿。

private void notifyBlockEvent(final long endTime) {
    final long startTime = mStartTimestamp;
    final long startThreadTime = mStartThreadTimestamp;
    final long endThreadTime = SystemClock.currentThreadTimeMillis();
    HandlerThreadFactory.getWriteLogThreadHandler().post(new Runnable() {
        @Override
        public void run() {
            mBlockListener.onBlockEvent(startTime, endTime, startThreadTime, endThreadTime);
        }
    });
}

如果发生了卡顿,那么就会将堆栈信息记录到文件当中,但是这样处理真的能够帮助到我们吗?

1.4 Handler监控的缺陷
当然Blockcanary确实能够帮助我们确认卡顿发生的一个大致范围,但是我们看下面的图

当方法B执行完成之后触发了卡顿阈值,这个时候堆栈当中存在方法A的堆栈信息和方法B的堆栈信息,那么我们会认为因为方法B的原因产生了卡顿吗?其实不然,如果堆栈信息中也包含了其他方法,那么Handler监控其实也只是给出了一个大粒度的范围,分析起来还是会有问题。

2 字节码插桩实现方法耗时监控
基于前面我们对于Blockcanary的分析,其存在的一个重大弊端就是无法获取细颗粒度的数据,例如每个方法执行的耗时,当打印出堆栈信息之后,附加上每个方法的耗时,这样就能准确地定位出耗时方法的存在。

private fun funcA() {
    funcB()
}

private fun funcB() {
    Thread.sleep(400)
    funcC()
}

private fun funcC() {
    funcD()
}

private fun funcD() {
    Thread.sleep(100)
}

例如还是以500ms为卡顿阈值,那么当执行方法A的时候,系统检测到了卡顿的发生,如果给到一个堆栈信息如下:

D方法 耗时100ms
C方法 耗时100ms
B方法 耗时400ms
A方法 耗时500ms

这样是不是就一目了然了,显然是方法B中有一个非常耗时的操作,那么如何获取每个方法执行的时间呢?

private fun funcA() {
    val startTime = System.currentTimeMillis()
    funcB()
    val deltaTime = System.currentTimeMillis() - startTime
}

上述这种方式可以获取方法耗时,如果我们仅在测试阶段想测试某个方法耗时可以这么做,但是工程中成千上万的方法,如果靠自己手动这么添加岂不是要累死,所以就需要字节码插桩来帮忙在每个方法中加入上述代码逻辑。

2.1 字节码插桩流程
如果有看过 Android进阶宝典 – 从字节码插桩技术了解美团热修复这篇文章的伙伴,可能对于字节码插桩有些了解了。其实字节码插桩,就是在class文件中写代码。

因为不管是Java还是Kotlin最终都会编译成class字节码,而我们日常开发中肯定是在Java(Kotlin)层上写代码,而字节码插桩则是在class文件上写代码。

因此整个字节码插桩的流程就是

其中难点就在于解析出class文件中包含的信息之后,需要严格按照class字节码的规则来进行修改,只要有一个地方改错了,那么生成的.class文件就无法使用,所以如果要我们自己修改显然是很难,因此各路Android大佬考虑到这个问题,就开源出很多框架提供给我们使用。

2.2 引入ASM实现字节码插桩
首先,我们先引入ASM依赖

implementation 'org.ow2.asm:asm:9.1'
implementation 'org.ow2.asm:asm-util:9.1'
implementation 'org.ow2.asm:asm-commons:9.1'

我们可以根据2.1小节的这个流程图,利用ASM中的工具完成字节码插桩。

public class TestFunctionRunTime {

    public TestFunctionRunTime() {
    }

    public void funA() throws InterruptedException {
        Thread.sleep(2000);
    }
}

例如,我们想在funA中插入计算耗时的方法,那么首先需要得到这个类的class文件

fun transform() {
    //IO操作,获取文件流
    val fis =
        FileInputStream("/storage/emulated/0/TestFunctionRunTime.class")
    //用于读取class文件中信息
    val cr = ClassReader(fis)
    val cw = ClassWriter(ClassWriter.COMPUTE_MAXS)
    //开始分析字节码
    cr.accept(
        MyClassVisitor(Opcodes.ASM9, cw),
        ClassReader.SKIP_FRAMES or ClassReader.SKIP_DEBUG
    )
}

首先,获取class文件这里我作为示例直接通过IO加载某个路径下的class文件,通过ASM中提供的ClassReader和ClassWriter来读取class中的文件信息,然后调用ClassReader的accept方法,开始分析class文件。

class MyClassVisitor(api: Int, classVisitor: ClassVisitor) : ClassVisitor(api, classVisitor) {
    override fun visitMethod(
        access: Int,
        name: String?,
        descriptor: String?,
        signature: String?,
        exceptions: Array<out String>?
    ): MethodVisitor {

        /**这里假设就对一个方法插桩*/
        return if (name == "funA") {
            val methodVisitor =
                super.visitMethod(access, name, descriptor, signature, exceptions)
            MyMethodVisitor(api, methodVisitor, access, name, descriptor)
        } else {
            super.visitMethod(access, name, descriptor, signature, exceptions)
        }

    }

    override fun visitField(
        access: Int,
        name: String?,
        descriptor: String?,
        signature: String?,
        value: Any?
    ): FieldVisitor {
        return super.visitField(access, name, descriptor, signature, value)
    }

    override fun visitAnnotation(descriptor: String?, visible: Boolean): AnnotationVisitor {
        return super.visitAnnotation(descriptor, visible)
    }
}

因为在一个类中,会存在很多属性,例如变量、方法、注解等等,所以在ASM中的ClassVisitor类中,提供了这些属性的访问权利,例如visitMethod可以访问方法,假如我们想要对funA进行插桩,那么就需要做一些自定义的操作,这里就可以使用ASM提供的AdviceAdapter来完成方法执行过程中代码的插入。

class MyMethodVisitor(
    val api: Int,
    val methodVisitor: MethodVisitor,
    val mAccess: Int,
    val methodName: String,
    val descriptor: String?
) : AdviceAdapter(api, methodVisitor, mAccess, methodName, descriptor) {
    /**当方法开始执行的时候*/
    override fun onMethodEnter() {
        super.onMethodEnter()

    }
    /**当方法执行结束的时候*/
    override fun onMethodExit(opcode: Int) {
        super.onMethodExit(opcode)

    }
}

假设我们对于每个方法,都插入以下两行代码,那么我们在操作字节码的时候,需要看一下当这个方法被编译成字节码之后,是什么样的。

public void funA() throws InterruptedException {
    Long startTime = System.currentTimeMillis();
    Thread.sleep(2000L);
    Log.e("TestFunctionRunTime", "duration=>" + (System.currentTimeMillis() - startTime));
}

插入代码之前的字节码如下:

public funA()V throws java/lang/InterruptedException 
   L0
    LINENUMBER 18 L0
    LDC 2000
    INVOKESTATIC java/lang/Thread.sleep (J)V
   L1
    LINENUMBER 19 L1
    RETURN
   L2
    LOCALVARIABLE this Lcom/lay/mvi/net/TestFunctionRunTime; L0 L2 0
    MAXSTACK = 2
    MAXLOCALS = 1

插入代码之后的字节码如下:

public funA()V throws java/lang/InterruptedException 
   L0
    LINENUMBER 17 L0
    INVOKESTATIC java/lang/System.currentTimeMillis ()J
    INVOKESTATIC java/lang/Long.valueOf (J)Ljava/lang/Long;
    ASTORE 1
   L1
    LINENUMBER 18 L1
    LDC 2000
    INVOKESTATIC java/lang/Thread.sleep (J)V
   L2
    LINENUMBER 19 L2
    LDC "TestFunctionRunTime"
    NEW java/lang/StringBuilder
    DUP
    INVOKESPECIAL java/lang/StringBuilder.<init> ()V
    LDC "duration=>"
    INVOKEVIRTUAL java/lang/StringBuilder.append (Ljava/lang/String;)Ljava/lang/StringBuilder;
    INVOKESTATIC java/lang/System.currentTimeMillis ()J
    ALOAD 1
    INVOKEVIRTUAL java/lang/Long.longValue ()J
    LSUB
    INVOKEVIRTUAL java/lang/StringBuilder.append (J)Ljava/lang/StringBuilder;
    INVOKEVIRTUAL java/lang/StringBuilder.toString ()Ljava/lang/String;
    INVOKESTATIC android/util/Log.e (Ljava/lang/String;Ljava/lang/String;)I
    POP
   L3
    LINENUMBER 20 L3
    RETURN
   L4
    LOCALVARIABLE this Lcom/lay/mvi/net/TestFunctionRunTime; L0 L4 0
    LOCALVARIABLE startTime Ljava/lang/Long; L1 L4 1
    MAXSTACK = 6
    MAXLOCALS = 2
}

首先我们看如果按照我们这种加代码的方式,当然没问题,但是在进行插桩的时候,将会写很多的字节码指令,看下面的代码,我仅仅贴出L2代码块就需要这么多,写的多通常就会出问题。

visitLdcInsn(methodName)
visitTypeInsn(NEW, "java/lang/StringBuilder")
visitInsn(DUP)
visitMethodInsn(INVOKESPECIAL, "java/lang/StringBuilder", "<init>", "()V", false)
visitLdcInsn(""duration=>"")
visitMethodInsn(
    INVOKEVIRTUAL,
    "java/lang/StringBuilder",
    "append",
    "(Ljava/lang/String;)Ljava/lang/StringBuilder",
    false
)
visitMethodInsn(INVOKESTATIC, "java/lang/System", "currentTimeMillis", "()J", false)
visitVarInsn(ALOAD, 1)
visitMethodInsn(INVOKEVIRTUAL, "java/lang/Long", "longValue", "()J", false)
visitInsn(LSUB)
visitMethodInsn(
    INVOKEVIRTUAL,
    "java/lang/StringBuilder",
    "append",
    "(J)Ljava/lang/StringBuilder",
    false
)
visitMethodInsn(
    INVOKEVIRTUAL,
    "java/lang/StringBuilder",
    "toString",
    "()Ljava/lang/String",
    false
)
visitMethodInsn(
    INVOKEVIRTUAL,
    "android/util/Log",
    "e",
    "(Ljava/lang/String;Ljava/lang/String;)I",
    false
)
visitInsn(POP)

所以简单一点就是封装一个方法,因为这个插桩是在编译时将代码插入,所以不影响

object AppMethodTrace {

    private var startTime: Long = 0L
    fun start() {
        startTime = System.currentTimeMillis()
    }

    fun end(funcName: String) {
        val endTime = System.currentTimeMillis()
        Log.e("AppMethodTrace", "$funcName 耗时为${endTime - startTime}")
    }
}

看这样就变得非常简便了,而且写起来也是非常清晰

public funA()V throws java/lang/InterruptedException 
   L0
    LINENUMBER 17 L0
    GETSTATIC com/lay/mvi/net/AppMethodTrace.INSTANCE : Lcom/lay/mvi/net/AppMethodTrace;
    INVOKEVIRTUAL com/lay/mvi/net/AppMethodTrace.start ()V
   L1
    LINENUMBER 18 L1
    LDC 2000
    INVOKESTATIC java/lang/Thread.sleep (J)V
   L2
    LINENUMBER 19 L2
    GETSTATIC com/lay/mvi/net/AppMethodTrace.INSTANCE : Lcom/lay/mvi/net/AppMethodTrace;
    LDC "funA"
    INVOKEVIRTUAL com/lay/mvi/net/AppMethodTrace.end (Ljava/lang/String;)V
   L3
    LINENUMBER 20 L3
    RETURN
   L4
    LOCALVARIABLE this Lcom/lay/mvi/net/TestFunctionRunTime; L0 L4 0
    MAXSTACK = 2
    MAXLOCALS = 1

那么通过onMethodEnter和onMethodExit两个方法的处理,就可以完成对字节码插入的操作。

class MyMethodVisitor(
    val api: Int,
    val methodVisitor: MethodVisitor,
    val mAccess: Int,
    val methodName: String,
    val descriptor: String?
) : AdviceAdapter(api, methodVisitor, mAccess, methodName, descriptor) {
    /**当方法开始执行的时候*/
    override fun onMethodEnter() {
        super.onMethodEnter()
        visitFieldInsn(
            GETSTATIC,
            "com/lay/mvi/net/AppMethodTrace",
            "INSTANCE",
            "Lcom/lay/mvi/net/AppMethodTrace"
        )
        visitMethodInsn(INVOKEVIRTUAL, "com/lay/mvi/net/AppMethodTrace", "start", "()V", false)

    }

    /**当方法执行结束的时候*/
    override fun onMethodExit(opcode: Int) {
        super.onMethodExit(opcode)
        visitFieldInsn(
            GETSTATIC,
            "com/lay/mvi/net/AppMethodTrace",
            "INSTANCE",
            "Lcom/lay/mvi/net/AppMethodTrace"
        )
        /**方法名可以动态拿到*/
        visitLdcInsn(methodName)
        visitMethodInsn(
            INVOKEVIRTUAL,
            "com/lay/mvi/net/AppMethodTrace",
            "end",
            "(Ljava/lang/String;)V",
            false
        )
    }
}

最终,通过分析处理字节码之后,将修改后的字节码重新输出到新的文件,在实际的应用开发中,是需要覆盖之前的字节码文件的。

//输出结果
val bytes = cw.toByteArray()
val fos =
    FileOutputStream("/storage/emulated/0/TestFunctionRunTimeTransform.class")
fos.write(bytes)
fos.flush()
fos.close()

如果伙伴们第一次使用,建议还是熟悉所有的字节码指令以及ASM的API,这样我们在写的时候就非常迅速了。

2.3 Blockcanary的优化策略
通过前面我们对于Blockcanary的了解,通过Handler虽然能够获取卡顿时的堆栈信息,但是无法获取到方法的执行耗时,所以通过ASM字节码插桩统计方法耗时配合Handler,就能够精确地定位到卡顿的方法,有时间的伙伴们可以去看下腾讯的Matrix。

最后还要啰嗦一下,其实对于字节码插桩,像美团的热修复框架采用的字节码插桩技术就是ASM,但方式并不是只有这一种,像Javassist、kotlinpoet/javapoet都具备插桩的能力;我们在做线上卡顿监控的时候,其实就是在做一个系统,所以不能从一个点出发,像运用到系统能力之外,同样也会使用到三方框架作为辅助手段,目的就是为了能够达到快速定位、快速响应的能力。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/718901.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

.Net OpenCVSharp生成灰度图和二值图

文章目录 前言一、灰度图二、二值图 前言 使用OpenCVSharp生成图片的灰度图和二值图 .Net 8.0版本&#xff0c;依赖OpenCvSharp4和OpenCvSharp4.runtime.win组件。 原图&#xff1a; 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、灰度图 /// &…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 内存访问热度分析(100分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…

Proteus8.13安装及使用

Proteus安装包下载地址 具体安装方法如下&#xff1a; 退出所有杀毒软件,右键以管理员身份运行 如果缺插件安装插件然后点击安装 如果遇到这种需要勾选的都勾选 安装插件完成 安装过程: 安装完成后桌面会自动出现图标 注意这个安装包是免破解的, 安装好以后可以直接使用 打…

竞赛选题 LSTM的预测算法 - 股票预测 天气预测 房价预测

0 简介 今天学长向大家介绍LSTM基础 基于LSTM的预测算法 - 股票预测 天气预测 房价预测 这是一个较为新颖的竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/postgraduate 1 基于 Ke…

React+TS前台项目实战(十一)-- 全局常用组件提示语可复制Link组件封装

文章目录 前言HighLightLink组件1. 功能分析2. 代码详细注释3. 使用方式4. 效果展示 总结 前言 今天这篇讲的这个组件&#xff0c;是一个用于高亮显示文本并添加可选的跳转链接&#xff0c;提示文本&#xff0c;复制文本的 React 组件 HighLightLink组件 1. 功能分析 &#x…

SmartEDA、Multisim、Proteus大比拼:电路设计王者之争?

在电路设计领域&#xff0c;SmartEDA、Multisim和Proteus无疑是三款备受瞩目的软件工具。它们各自拥有独特的功能和优势&#xff0c;但在这场电路设计王者的竞争中&#xff0c;谁才是真正的领跑者&#xff1f;让我们深入探究这三款软件的异同&#xff0c;揭示它们各自的魅力所在…

【ComfyUI】Stable Diffusion 3 加Controlnet

基于 instantX-research/diffusers_sd3_control: &#x1f917; Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX. (github.com) 和 ZHO-ZHO-ZHO/ComfyUI-SD3-Medium-CN-Diffusers: ComfyUI SD3-Medium ControlNet&#…

JRebel-JVMTI [FATAL] Couldn‘t write to C:\Users\中文用户名-完美解决

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 热部署下载参考博客解决第一步第二步第三步&#xff1a;第四步&#xff1a; 热部署下载 下载后启动报错&#xff1a;JRebel-JVMTI [FATAL] Couldn’t write to C:\…

WebSocket实现消息实时通知

参考文档&#xff1a;万字长文&#xff0c;一篇吃透WebSocket&#xff1a;概念、原理、易错常识、动手实践、WebSocket 教程 1 背景 有一个需求&#xff0c;需要实现实时通信的功能&#xff0c;如果有新消息&#xff0c;后端会主动发送请求告知前端有新消息&#xff0c;需要前…

git Fork或者git clone克隆别人的项目到自己的仓库如何保持原仓库同步

一、问题描述 有时候我们会clone别人的项目到自己的仓库来进行二次开发,开发好之后提交到自己的仓库&#xff0c;如有原仓库有更新了,可以选择性的进行同步 二、解决方法 这里以ruoyi-vue-pro得前端项目来进行演示&#xff0c;创建一个目录&#xff0c;在目录下随便创建一个文…

入门Rabbitmq

1、什么是消息队列 消息队列&#xff1a;应用之间传递消息的方式&#xff0c;允许应用程序异步发送和接收消息&#xff0c;不需要连接对方 消息&#xff1a;文本字符串&#xff0c;对象.... 队列&#xff1a;存储数据。先进先出 2、应用场景 ①库存系统挂掉之后 MQ会等待&…

Ubuntuwin11双系统

一、准备工作 win11与ubuntu20.4双系统安装案例教程,先查看引导模式参数不服则不要安装否则会报异常 查看BIOS引导模式 查看磁盘分区格式 下载Ubuntu镜像 所有版本下载地址,我的华为云镜像ubuntu20.4这个版本地址

Hi3861 OpenHarmony嵌入式应用入门--启动流程

目录 BootLoader的启动与运行 Hi3861 RiSC-V boot 启动文件介绍 Loaderboot 启动过程 Flashboot代码介绍 printf串口配置 内核启动任务 BootLoader的启动与运行 Hi3861 RiSC-V boot 启动文件介绍 - Hi3861 的引导程序分为两部分&#xff0c;一部分是在芯片出厂时已经固…

服务器新硬盘分区、格式化和挂载

文章目录 参考文献查看了一下起点现状分区(base) ~ sudo parted /dev/sdcmklabel gpt&#xff08;设置分区类型&#xff09;增加分区 格式化需要先退出quit&#xff08;可以&#xff09;(base) / sudo mkfs.xfs /dev/sdc/sdc1&#xff08;失败&#xff09;sudo mkfs.xfs /dev/s…

Java基础学习-数组

目录 数组定义 注意点&#xff1a; 地址值是数组在内存中实际存储的地址。 案例遍历&#xff1a;遍历数组得到每一个元素&#xff0c;求数组里面所有数据和 案例&#xff1a;定义数组&#xff0c;遍历能被3整除的数字 案例&#xff1a;遍历一个数组&#xff0c;奇数将当前…

基于CentOS的全新Linux机器安装Jenkins并生成Allure报告

目录 一、安装Docker 二、安装Docker Compose 三、准备测试用例 四、配置docker-compose.yml 五、启动Jenkins 六、配置Jenkins和Allure插件 七、创建含pytest的Jenkins任务 一、安装Docker 在CentOS上&#xff0c;首先更新包管理工具并安装所需的包。 sudo yum update…

C++实现简单日历(win11日历)

&#x1f4c7;文章目录 &#x1f680;实现目标&#x1f680;效果&#x1f680;计算上一个月的最后一天是周几&#x1f680;打印日历函数&#x1f680;完整代码 &#x1f680;实现目标 我们想要的效果&#xff1a; 1.布局类似 2.键盘按下←或者→会切换到下一个月&#xff08;这…

Coursera耶鲁大学金融课程:Financial Markets 笔记Week 02

Financial Markets 本文是学习 https://www.coursera.org/learn/financial-markets-global这门课的学习笔记 这门课的老师是耶鲁大学的Robert Shiller https://en.wikipedia.org/wiki/Robert_J._Shiller Robert James Shiller (born March 29, 1946)[4] is an American econom…

Linux-远程访问及控制

一、SSH远程管理 SSH&#xff08;Secure Shell&#xff09;是一种安全通道协议&#xff0c;主要用来实现字符界面的远程登录、远程复制等功能。SSH 协议对通信双方的数据传输进行了加密处理&#xff0c;其中包括用户登录时输入的用户口令。与早期的 Telent&#xff08;远程登录…

【设计模式深度剖析】【10】【行为型】【状态模式】

&#x1f448;️上一篇:访问者模式 设计模式-专栏&#x1f448;️ 文章目录 状态模式定义英文定义直译如何理解呢&#xff1f; 状态模式的角色Context&#xff08;环境类&#xff09;State&#xff08;抽象状态类&#xff09;ConcreteState&#xff08;具体状态类&#xff09…