LLM中表格处理与多模态表格理解

文档处理中不可避免的遇到表格,关于表格的处理问题,整理如下,供各位参考。

问题描述

RAG中,对上传文档完成版式处理后进行切片,切片前如果识别文档元素是表格,那么则需要对表格进行处理。一般而言,表格处理分成三个部分:

  • TD任务,Table Detection,表格识别
  • TSR任务,Table Structure Recognition,表格结构识别
  • TCD任务,Table Content Recognition,表格内容识别

在这里插入图片描述
表格检测任务是识别文档中的表格元素;表格结构识别则是理解表格的布局和结构;而表格内容识别则是提取表格中的具体数据。这些任务共同构成了表格处理的完整流程。目前主要的思路是通过识别到表格,将表格转化为结构化文本信息,比如HTML或者Markdown,再利用LLM对结构化文本的泛化能力进行分析和处理。
然而,在现实世界的一些场景中,获取高质量的文本表格表示可能比较困难,而表格图像则更容易获取。因此,如何直接使用直观的视觉信息来理解表格是一个关键且迫切的挑战。
在这里插入图片描述

多模态表格理解的思路

多模态表格理解指的是结合文本、图像等多种模态信息来理解表格内容。在文本表格表示难以获取的情况下,如何利用直观的视觉信息来理解表格是一个很好的研究方向。为了解决多模态表格理解问题,构建了一个名为MMTab的大规模数据集,涵盖了广泛的表格图像、指令和任任务,为多模态表格理解提供了丰富的实验场景。MMTab数据集的设计思路和数据构造方式,为研究者提供了新的视角和工具,以应对多模态表格理解中的各种挑战。
《Multimodal Table Understanding》,代码放在:https://github.com/SpursGoZmy/Table-LLaVA

在这里插入图片描述

1、其数据构造的方式:

比较有趣的是做的数据增强方案:

其一,表格级别增强(Table-level augmentations):现实世界的表格具有不同的结构和样式。为了使模型能够处理各种样式的表格,设计了脚本来渲染具有三种不同样式的表格图像:网页风格(Web-page,占比70.8%)、Excel风格(占比19.4%)和Markdown风格(占比9.8%)。还考虑细粒度的调整,如字体类型和单元格颜色。

其二,指令级别增强(Instruction-level augmentations):用户对于同一任务的指令可能会有所不同。为了提高模型对这种变化的鲁棒性,作者使用GPT-4生成新的指令模板和关于JSON输出格式的描述,基于几个手动注释的示例进行少量样本(few-shot)学习。生成的指令模板如果包含语法错误或与原始任务偏离,将被过滤掉。

其三,任务级别增强(Task-level augmentations):尽管收集的14个公共数据集突出了9个学术表格任务,这些任务需要基于表格的推理能力,但现有的多模态大型语言模型(MLLMs)是否真的理解基本的表格结构仍然是一个问题。 为了进一步加强MLLMs对基本表格结构的理解能力,设计了6个表格结构理解任务,例如表格大小检测(TSD)任务。

除了上述策略,作者还将同一表格的单轮样本结合起来,构成了37K多轮对话样本。
在这里插入图片描述

2、数据的具体统计,包括用于微调的数据集以及测试

MMTab数据集包括150K样本用于预训练,232K样本用于指令微调,以及45K和4K样本分别用于内部和外部评估。

数据集中包含了105K张表格图像,这些图像覆盖了广泛结构(例如,具有平坦结构的简单表格以及具有合并单元格和分层标题的复杂表格)。数据集中的表格图像不仅结构多样,还具有不同的风格(网页、Excel、Markdown表格)和来自不同领域的数据(如维基百科和财务报告)。
在这里插入图片描述

3、benchmark的计算方式

在这里插入图片描述

4、进行对应的微调路线

论文中开发了一个通用的表格MLLM Table-LLaVA,使用MMTab-instruct数据集,该数据集包含了多种与表格相关的任务,例如问题回答(TQA)、事实验证(TFV)、文本生成(T2T)等,模型基于之前提出的LLaVA-1.5模型。
在这里插入图片描述

总结

多模态表格处理是一种集成了视觉、文本和结构化数据等多种信息源的技术,旨在更全面地理解和解析表格内容。随着深度学习、大型语言模型等技术的不断进步,多模态表格理解的性能将得到显著提升。

1、多模态表格处理需要强大的视觉识别能力,以识别和解析表格的视觉布局,包括行列、单元格合并等。涉及到图像处理和模式识别技术,如使用深度学习模型来检测表格边界和单元格结构。
2、文本理解是多模态处理的另一关键方面。表格中的文本信息需要通过自然语言处理技术来提取和理解,包括实体识别、关系抽取和语义分析等,以捕捉表格中的数据和它们之间的联系。
3、结构化数据的整合对于多模态表格处理同样重要。将视觉识别的表格结构与文本内容相结合,转化为结构化的数据库格式,可以进一步促进数据的分析和应用。
4、多模态表格处理还应考虑到数据的多样性和复杂性。不同的表格可能来自不同的来源,具有不同的格式和风格。因此,处理系统需要具备高度的灵活性和适应性,以应对各种不同的输入。

此外,随着数据集的不断丰富和完善,模型的泛化能力和适应性也将得到加强。多模态表格处理的未来发展方向可能包括更深层次的语义理解、更智能的数据融合策略,以及更广泛的应用场景,如自动化报告生成、智能数据分析等。

参考资料:

文档表格结构识别技术与数据总结:兼看多模态表格理解基准设计及数据构建思路
《A Study on Reproducibility and Replicability of Table Structure Recognition Methods》
《Deep Learning for Table Detection and Structure Recognition: A Survey》
《TableVLM: Multi-modal Pre-training for Table Structure Recognition》
《Improving Table Structure Recognition with Visual-Alignment Sequential Coordinate Modeling》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/718235.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

黑龙江等保测评的流程和注意事项

黑龙江等保测评(信息安全级别保护评估),是根据国家信息安全等级保护的有关标准,以保证信息系统的安全性,对信息系统所做的一种安全性评价。下面是对等保进行评估的具体过程和说明: 一、黑龙江等保测评流程 …

Unity制作背包的格子

1.新建一个面板 2.点击面板并添加这个组件 3.点击UI创建一个原始图像,这样我们就会发现图像出现在了面板的左上角。 4.多复制几个并改变 Grid Layout Group的参数就可以实现下面的效果了

无忧易售ERP:引领电商管理新纪元,一键EAN生成,让商品流通无忧

在瞬息万变的电商蓝海中,高效与精准成为企业制胜的关键。为了帮助广大电商卖家们在激烈的市场竞争中脱颖而出,无忧易售ERP支持Allegro、OZON、OnBuy、Walmart平台免费EAN生成工具及一键填充功能。 如何使用无忧易售erp快速生成EAN码呢,接下来…

Linux(Centos7)OpenSSH漏洞修复,升级最新openssh-9.7p1

OpenSSH更新 一、OpenSSH漏洞二、安装zlib三、安装OpenSSL四、安装OpenSSH 一、OpenSSH漏洞 服务器被扫描出了漏洞需要修复,准备升级为最新openssh服务 1. 使用ssh -v查看本机ssh服务版本号 ssh -V虚拟机为OpenSSH7.4p1,现在准备升级为OpenSSH9.7p1…

帮助汽车制造业实现高精度脚垫上下料自动化

随着汽车制造业的快速发展,对生产效率和产品质量的要求日益提高。在汽车制造过程中,脚垫的上下料操作是一个重要的环节,传统的人工操作方式已经无法满足现代生产的需求。富唯智能凭借其先进的3D视觉引导机器人抓取技术,成功解决了…

YOLOv8 + SAM实现自动标注分割数据集【附完整源码+步骤详解】

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…

【C++11】常见的c++11新特性(一)

文章目录 1. C11 简介2. 常见的c11特性3.统一的列表初始化3.1initializer_list 4. decltype与auto4.1decltype与auto的区别 5.nullptr6.右值引用和移动语义6.1左值和右值6.1.1左值的特点6.1.2右值的特点6.1.3右值的进一步分类 6.2左值引用和右值引用以及区别6.2.1左值引用6.2.2…

YOLOv5目标检测——基于YOLOv5的吊车安全监测

移动式起重机是建筑施工中使用的重要设备。 遵守正确的操作程序对于防止事故很重要。 然而,其中存在人为错误的因素。 这里我将举一个例子来说明计算机视觉(CV)如何帮助解决这个问题。 1、移动式起重机操作的安全问题 为简单起见&#xff0…

躬行践履始玉成,行而不辍终致远 | 中创算力季度优秀员工表彰大会

蓬勃发展,根基在人。在中创发展的道路上,有初心不改的领导者、有披星戴月的业务标杆、也有默默坚守的员工,他们扎根中创,用努力、拼搏、坚持,在中创的历程上镌刻下 属于自己的一份印记! 为了表彰优秀&…

【吉林大学Java程序设计】第9章:并发控制

第9章:并发控制 1.线程的基本概念2.线程的创建与启动3.线程的调度与优先级线程的状态线程的生命周期线程控制的基本方法线程优先级 4.线程的协作多线程存在的问题同步区域(临界区)生产者与消费者问题(互斥与同步问题)哲…

618必抢清单:内存升级国货更强,DDR5劲爆大白菜

随着数字时代的加速发展,平时在PC上玩游戏、办公的时候,电脑性能对我们的影响越来越打。相比于CPU、显卡等硬件,内存对于电脑性能的重要性也很高,而且可以通过更低的成本来升级。内存就像是电脑的神经网络,影响着CPU数…

【机器学习300问】119、什么是语言模型?

语言模型(Language Models)是自然语言处理(NLP)的重要组成部分,它的目的是量化一段文本或一个序列的概率。简单讲就是你给语言模型一个句子,它给你计算出特定语言中这个句子出现的概率。这样的概率度量可以…

Node-red win11安装

文章目录 前言一、安装node.js和npm二、安装Node-red三、 运行Node-red 前言 Node-RED 是一种编程工具,用于以新颖有趣的方式将硬件设备、API 和在线服务连接在一起。 它提供了一个基于浏览器的编辑器,只需单击一下即可将调色板中的各种节点轻松连接在…

麒麟移动运行环境(KMRE)——国内首个开源的商用移固融合“Android生态兼容环境”正式开源

近日,由麒麟软件研发的KMRE(Kylin Mobile Runtime Environment,麒麟移动运行环境)在openKylin(开放麒麟)社区正式发布,为Linux桌面操作系统产品提供了高效的Android运行环境解决方案。这也是国内…

2024年【电工(高级)】考试内容及电工(高级)考试试题

题库来源:安全生产模拟考试一点通公众号小程序 电工(高级)考试内容考前必练!安全生产模拟考试一点通每个月更新电工(高级)考试试题题目及答案!多做几遍,其实通过电工(高…

Codesys 编程实现随机数字+仿照rand()原理+代码下载

目录 一、C语言中rand()随机数的演示及问题 二、同样的原理,在Codesys中实现随机数 三、codesys在线仿真验证功能 四、代码下载 一、C语言中rand()随机数的演示及问题 (1)只用rand(…

降噪领夹麦克风哪个牌子好?揭秘无线领夹麦克风哪个降噪好

相信很多新手视频创作者都有一个疑问:为什么别人的视频或者直播音质这么清晰,几乎没什么噪音呢?其实最主要的就是麦克风的原因,相机或手机内置的麦克风是无法提供高质量的音频记录以及很好的指向性的。 想要拍摄出来的视频作品拥有…

亚马逊跟卖ERP系统,怎样提升新手卖家选品的质量与效率!

今天给新手卖家推荐一款实用ERP系统,相信新手卖家在碰到最难的问题应该就是选品了吧,那我们该如何快速解决我们找品难找品慢的问题呢,现在有一套专门为跟卖打造的一款全功能erp系统,从我们选品上传,到我们采购&#xf…

XSS学习(绕过)

学习平台&#xff1a;xss.tesla-space.com XSS学习&#xff08;绕过&#xff09; level1level2level4level5level6level7level8level9level10level11level12 level1 应该没有过滤 https://xss.tesla-space.com/level1.php?name<script>alert(1);</script> leve…

修改以太网卡mac地址

原生以太网卡与PCIe以太网卡 以Intel 原生以太网卡与PCIe以太网卡为例&#xff1a; Intel原生以太网卡和PCIe以太网卡在系统中实现网络连接时&#xff0c;涉及到与系统总线&#xff08;如PCIe总线&#xff09;的连接方式和性能差异。 Intel 原生以太网卡 定义&#xff1a;所…