持续学习的综述: 理论、方法与应用

摘要

为了应对现实世界的动态,智能系统需要在其整个生命周期中增量地获取、更新、积累和利用知识。这种能力被称为持续学习,为人工智能系统自适应发展提供了基础。从一般意义上讲,持续学习明显受到灾难性遗忘的限制,在这种情况下,学习一项新任务通常会导致旧任务的表现急剧下降。除此之外,近年来出现了越来越多的进步,这些进步在很大程度上扩展了对持续学习的理解和应用。对这一方向日益增长和广泛的兴趣表明了它的现实意义和复杂性。在这项工作中,我们提出了一个全面的持续学习调查,寻求桥梁的基本设置,理论基础,代表性的方法,和实际应用。基于现有的理论和实证结果,我们总结了持续学习的一般目标,即在资源效率的背景下确保适当的稳定性-可塑性权衡和足够的任务内/任务间概泛性。然后,我们提供了一个最先进的和详细的分类,广泛分析了代表性方法如何解决持续学习问题,以及它们如何适应现实应用中的特定挑战。通过对有前途的方向的深入讨论,我们相信这种整体的视角可以极大地促进该领域乃至其他领域的后续探索。

Liyuan Wang, Xingxing Zhang, Hang Su, Jun Zhu, Fellow, IEEE
Tsinghua University

简介

学习是智能系统适应动态环境的基础。为了应对外部变化,进化赋予了人类和其他具有强适应性的生物不断获取、更新、积累和利用知识的能力[150],[229],[328]。自然,我们期望人工智能(AI)系统以类似的方式适应。这激发了对持续学习的研究,其中一个典型的设置是一个接一个地学习一系列内容,并表现得好像它们同时被观察到一样(见图1,a)。这些内容可以是新技能,旧技能的新例子,不同的环境,不同的背景等,并结合了特定的现实挑战[328],[423]。由于内容是在一生中不断增加的,因此在许多文献中,持续学习也被称为增量学习或终身学习,没有严格的区分[71],[229]。

与建立在捕获静态数据分布的前提下的传统机器学习模型不同,持续学习的特点是从动态数据分布中学习。一个主要的挑战被称为灾难性遗忘[296],[297],在这种情况下,对新分布的适应通常会导致捕捉旧分布的能力大大降低。这种困境是学习可塑性和记忆稳定性之间权衡的一个方面:前者过多会干扰后者,反之亦然。除了简单地平衡这两个方面的“比例”之外,持续学习的理想解决方案应该具有很强的泛化性,以适应任务内部和任务之间的分布差异(见图1,b)。重用所有旧的训练样本(如果允许的话)可以很容易地解决上述挑战,但会产生巨大的计算和存储开销,以及潜在的隐私问题。事实上,持续学习主要是为了保证模型更新的资源效率,最好接近于只学习新的训练样本。

在这里插入图片描述
图1所示。持续学习的概念框架。a,持续学习需要适应具有动态数据分布的增量任务(第2节)。b,理想的解决方案应确保在稳定性(红色箭头)和可塑性(绿色箭头)之间进行适当的权衡,以及对任务内(蓝色箭头)和任务间(橙色箭头)分布差异(第3节)具有足够的通用性。代表性的方法针对机器学习的各个方面(第4节)。d,持续学习适应实际应用,以解决特定的挑战,如场景复杂性和任务特异性(第5节)。

近年来,针对机器学习的各个方面提出了许多持续学习方法,从概念上可以分为五组(见图1,c):参考旧模型添加正则化项(基于正则化的方法); 近似和恢复旧的数据分布(基于重播的方法);显式操纵优化程序(基于优化的方法);学习鲁棒和分布良好的表示(基于表示的方法);用合理设计的体系结构(基于体系结构的方法)构造任务自适应参数。这种分类法扩展了常用的分类法和当前的进展,并为每个类别提供了细化的子方向。我们总结了这些方法如何实现持续学习的目标,并对它们的理论基础和具体实现进行了广泛的分析。具体来说,这些方法是紧密相连的,例如:、正则化和重放最终在优化中起到矫正梯度方向的作用,并且具有高度的协同性,例如;,重播的有效性可以通过从旧模型中提取知识来促进。

现实应用对持续学习提出了特殊的挑战,分为场景复杂性和任务特异性(见图1,d)。对于前者,例如在训练和测试中可能缺少任务识别,训练样本可能是小批量甚至一次引入。由于数据标记的成本和稀缺性,持续学习需要对少量、半监督甚至无监督的场景有效。对于后者,虽然目前的进展主要集中在视觉分类方面,但其他视觉领域,如物体检测和语义分割,以及其他相关领域,如条件生成、强化学习(RL)、自然语言处理(NLP)和伦理考虑,正以其各自的特点受到越来越多的关注。我们总结了他们所面临的特殊挑战,并分析了持续学习方法如何适应他们。

考虑到对持续学习的兴趣显著增长,我们相信这样一个最新和全面的调查可以为后续工作提供一个整体的视角。尽管有一些早期的关于持续学习的调查,覆盖范围相对较广[71],[328],但近年来的重要进展并没有被纳入其中。相比之下,最新的调查通常只捕获了持续学习的部分方面,包括其生物学基础[150],[157],[187],[229],视觉分类的专门设置[86],[215],[288],[294],[354],以及NLP[38],[209]或RL[214]的特定扩展。据我们所知,这是第一次系统地总结持续学习的最新进展的调查。在这些优势的基础上,我们提供了关于持续学习的深入讨论,包括当前的趋势、交叉方向的前景以及与神经科学的跨学科联系。

设置

持续学习的特点是从动态数据分布中学习。在实践中,不同分布的训练样本按顺序到达。用θ参数化的持续学习模型需要在没有或有限访问旧训练样本的情况下学习相应的任务,并在其测试集上表现良好。形式上,属于任务t的一批输入训练样本可以表示为Dt,b = {Xt,b, Yt,b},其中,Xt,b为输入数据,Yt,b为数据标签,t∈t ={1,···,k}为任务标识,b∈Bt为批索引(t和Bt分别表示它们的空间)。这里我们通过其训练样本Dt定义一个“任务”,其分布Dt:= p(Xt, Yt) (Dt表示省略批指标的整个训练集,对于Xt和Yt也是如此),并假设训练和测试之间的分布没有差异。在实际的约束条件下,数据标签Yt和任务标识t可能并不总是可用。在持续学习中,每个任务的训练样本可以分批增量到达(即{{Dt,b}b∈Bt}t∈t)或同时到达(即{Dt}t∈t)。

典型场景

根据增量批次的划分和任务身份的可用性,我们将典型的持续学习场景描述如下(形式比较见表1):

•实例增量学习(IIL):所有的训练样本都属于同一个任务,并且分批到达。
•Domain-Incremental Learning (DIL):任务具有相同的数据标签空间,但输入分布不同。任务标识不是必需的。
•任务增量学习(TIL):任务具有不相交的数据标签空间。在培训和测试中都提供了任务标识。
•类增量学习(CIL):任务具有不相交的数据标签空间。任务标识只在培训中提供。
•无任务持续学习(TFCL):任务具有不相交的数据标签空间。在培训或测试中都不提供任务标识。在线持续学习(OCL):任务具有不相交的数据标签空间。每个任务的训练样本作为一次通过的数据流到达。
•模糊边界持续学习(BBCL):任务边界是模糊的,其特征是不同但重叠的数据标签空间。
•连续预训练(CPT):预训练数据按顺序传递。目标是改善向下游任务的知识转移。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/717824.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

白酒:茅台镇白酒的酒厂社会责任与可持续发展

云仓酒庄豪迈白酒,作为茅台镇的品牌,不仅在产品品质和口感方面有着卓着的表现,在酒厂社会责任和可持续发展方面也做出了积极的探索和实践。 首先,云仓酒庄豪迈白酒注重环境保护和资源利用。酒厂在生产过程中严格控制能源消耗和排放…

使用 Nstbrowser 管理多个帐户 - 2024 年最佳反检测浏览器

每个人一定都看过那些房间里全是窃听器的老间谍电影,对吧?现在这些电影可能看起来有点好笑,但互联网并没有好到哪里去! 事实上,每个你打开的页面在你浏览时都在被监控!此外,当你管理多个账户时…

基于ChatGPT-4o自然科学研究全流程实践技术应用

自然科学研究遵循严谨的科学方法论,包括文献调研、问题综述、试验设计、提出假设、数据清洗、统计诊断、大数据分析、经典统计模型(回归模型、混合效应模型、结构方程模型、Meta分析模型)、参数优化、机器/深度学习、大尺度模型构建与模拟、论…

【AI开发】CRAG、Self-RAG、Adaptive-RAG

先放一张基础RAG的流程图 https://blog.langchain.dev/agentic-rag-with-langgraph/ 再放一个CRAG和self-RAG的LangChain官方博客 Corrective RAG(CRAG) 首先需要知道的是CRAG的特色发生在retrieval阶段的最后开始,即当我们获得到了近似的document(或者…

【proteus仿真】基于51单片机的电压检测系统

【proteus仿真】基于51单片机的电压检测系统 资料下载地址:关注公众号 小邵爱电子 获取 1.前言 使用51单片机和ADC模块设计一个数字电压表,将模拟信号0~5V之间的电压转换为数字量信号,并通过LED实时显示电压数据 、 2.仿真原理图 3.硬件…

简单几步把完整的Windows塞进U盘,小白都能看懂

前言 小白之前写过相似的文章,但教程是通过WinPE操作实现的。 把Windows系统装进U盘,从此到哪都有属于你自己的电脑系统 有些小伙伴反馈教程写得很复杂,简直生涩难懂。 为啥要写得这么复杂呢?小白是想让小伙伴们多了解一些不同…

为什么MOSFET是双向导通的

MOSFET 的电压控制机理是利用栅极电压的 大小改变感应电场生成的导电沟道的厚度(感生电荷的多少),来控制漏极电流 Id 的。从图1(b)中可 以看出,当栅极电压 V gs小于开启电压 V th时,无论 V ds的…

Android系统上Bootchart的使用

Android系统的启动细节分析,可以用工具bootchart来进行 一、Bootchart简介 官网地址:https://www.bootchart.org/ Google推荐bootchart作为开机优化的首选工具:https://source.android.com/devices/tech/perf/boot-times#bootchart bootc…

第三方软件测试报告包括哪些内容?如何获取专业第三方测试报告?

第三方软件测试报告是由独立的第三方公司进行软件测试后所生成的报告。该报告会清晰地呈现出软件在各个方面的测试结果和评估。通过第三方公司的专业测试,这些报告具有公正、中立和权威的特点。 一、第三方软件测试报告包括哪些内容? 1、功能测试:验证…

3d中毒了打不开模型怎么办---模大狮模型网

3D中毒了打不开模型怎么办?这是很多3D爱好者都会遇到的问题。在使用3D建模软件时,有时会出现打不开模型的情况,这可能是由于软件本身的问题,也可能是由于电脑配置不够高导致的。下面我们就来看看如何解决这个问题。 首先&#xff…

解密:不用import,Python编程将遭遇什么?

在Python中,import 语句用于导入其他模块或库,如果不使用 import,会导致以下问题: 无法使用外部库或模块: Python标准库以及第三方库提供了丰富的功能和工具,如果不导入这些库,就无法使用它们提供的功能。 代码可读性降低: import 语句可…

12.1 Go 测试的概念

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

Suno AI如何解决中文多音字的问题? 耗费500积分,亲测有效 ,V4版本会不会直接支持呢?

导读 SunoAI创作中文歌曲时,很容易遇到多音字的困扰,这期视频为大家分享解决这个问题的方法。 Suno似乎不太认识一些中文字,所以如果有什么多音词、冷僻字,不是唱错,要么就是跳过,v2、v3、v3.5似乎都有这…

MSPM0L1306——定时器

相关配置: #include "ti_msp_dl_config.h"int main(void) {SYSCFG_DL_init();//清除定时器中断标志NVIC_ClearPendingIRQ(TIMER_0_INST_INT_IRQN);//使能定时器中断NVIC_EnableIRQ(TIMER_0_INST_INT_IRQN);while (1) { } }//定时器…

双层循环和循环控制语句的使用,以及while和until的语法使用

echo 打印 -n 表示不换行输出 -e 输出转义字符 /b:相当于退格键(backspace) /n: 换行,相当于回车 /f: 换行,换行后的新行的开头连着上一行的行尾 /t: 相当于tab键 又叫做横向制…

智慧档案库房建设费用大概多少

智慧档案库房建设费用因地区、规模和具体需求而异,以下是一些常见费用项: 1. 建筑物建设费用:包括设计、施工、装修、材料等费用。 2. 设备费用:包括服务器、网络设备、存储设备、十防等硬件设备的费用。 3. 软件费用:…

“调包侠”时代已经过去:普通程序员应如何应对新时代的挑战?

🚀“调包侠”时代已经过去:普通程序员应如何应对新时代的挑战? 大家好,我是猫头虎,科技自媒体博主,今天周一。🌟今天我们来聊聊一个非常重要的话题,那就是在AI时代,为什…

计算机网络:网络层 - 虚拟专用网 VPN 网络地址转换 NAT

计算机网络:网络层 - 虚拟专用网 VPN & 网络地址转换 NAT 专用地址与全球地址虚拟专用网 VPN隧道技术 网络地址转换 NAT网络地址与端口号转换 NAPT 专用地址与全球地址 考虑到 IP 地址的紧缺,以及某些主机只需要和本机构内部的其他主机进行通信&…

MTANet: 多任务注意力网络,用于自动医学图像分割和分类| 文献速递-深度学习结合医疗影像疾病诊断与病灶分割

Title 题目 MTANet: Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification MTANet: 多任务注意力网络,用于自动医学图像分割和分类 01 文献速递介绍 医学图像分割和分类是当前临床实践中的两个关键步骤,其准…

day12--150. 逆波兰表达式求值+239. 滑动窗口最大值+ 347. 前 K 个高频元素

一、150. 逆波兰表达式求值 题目链接:https://leetcode.cn/problems/evaluate-reverse-polish-notation/description/ 文章讲解:https://programmercarl.com/0150.%E9%80%86%E6%B3%A2%E5%85%B0%E8%A1%A8%E8%BE%BE%E5%BC%8F%E6%B1%82%E5%80%BC.html 视频…