【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术

在这里插入图片描述

🔥 个人主页:空白诗

在这里插入图片描述

文章目录

    • 引言
    • 一、图数据及其应用场景
      • 1.1 图数据的定义和特征
      • 1.2 常见的图数据结构
        • 1.2.1 社交网络
        • 1.2.2 知识图谱
        • 1.2.3 分子结构
        • 1.2.4 交通网络
      • 1.3 图数据在不同领域的应用实例
        • 1.3.1 社交网络中的推荐系统
        • 1.3.2 知识图谱中的信息检索
        • 1.3.3 药物发现中的分子分析
        • 1.3.4 智能交通系统中的路径优化
    • 二、图神经网络的基础概念
      • 2.1 图神经网络的基本构成和原理
      • 2.2 GNN与传统神经网络的区别
      • 2.3 常见的图神经网络模型
        • 2.3.1 图卷积网络(GCN)
        • 2.3.2 GraphSAGE
        • 2.3.3 图注意力网络(GAT)
      • 2.4 信息传递和聚合机制
    • 三、图神经网络的关键技术
      • 3.1 节点表示学习
      • 3.2 图卷积运算
      • 3.3 信息传递机制
      • 3.4 聚合和更新操作
      • 3.5 实际示例:节点分类任务
    • 总结

在这里插入图片描述

引言

随着机器学习技术的迅猛发展,越来越多的数据类型得到了广泛的研究和应用。其中,图数据由于其能够表示复杂关系和结构的特点,逐渐成为研究的热点。然而,传统的机器学习和神经网络方法在处理图数据时往往力不从心,因为它们主要针对的是结构化数据(如表格数据)或序列数据(如文本和时间序列)。因此,如何高效地处理和分析图数据成为了一个重要的研究课题。

图数据在实际生活中无处不在,例如社交网络中的用户关系、知识图谱中的实体和关系、分子结构中的原子和键、以及交通网络中的道路和交叉口等。这些数据类型不仅复杂多样,而且包含丰富的上下文信息和隐含关系,传统的方法难以充分挖掘其潜在价值。

在这种背景下,图神经网络(Graph Neural Networks, GNN)应运而生。GNN通过引入图结构的特性,有效地解决了传统方法在处理图数据时的诸多限制。它能够捕捉图中节点和边之间的复杂关系,实现高效的节点表示学习和图结构信息的综合利用,从而在多个领域中展现出强大的应用潜力。

本篇文章将深入探讨图神经网络的基本概念、关键技术和实际应用案例,分析其优势与挑战,并展望其未来的发展趋势。通过本文,读者将全面了解图神经网络如何在处理复杂图数据方面发挥关键作用,以及这一技术在未来可能带来的创新和变革。


一、图数据及其应用场景

在这里插入图片描述

1.1 图数据的定义和特征

图数据是一种复杂的数据结构,由节点(vertices)和边(edges)组成,用于表示对象及其相互关系。节点代表数据中的实体,边则表示实体之间的关系。图数据的特征包括:

  • 多样性:图数据可以表示各种类型的关系,如一对一、一对多、多对多等。
  • 不规则性:图的结构不固定,节点和边的数量及连接方式可变。
  • 高维性:每个节点和边可以包含丰富的属性信息,如节点的特征向量和边的权重等。

1.2 常见的图数据结构

1.2.1 社交网络

社交网络中的图数据由用户(节点)和用户之间的关系(边)组成,用户的属性可以包括年龄、性别、兴趣爱好等,关系则可以表示好友关系、关注关系等。

好友
关注
好友
关注
共同爱好
用户1
用户2
用户3
用户4
1.2.2 知识图谱

知识图谱是一种语义网络,用图结构表示实体及其关系。节点代表实体,如人物、地点、事件等,边表示实体之间的语义关系,如“位于”、“属于”、“相关”等。

位于
相关
影响
人物: 爱因斯坦
地点: 德国
事件: 相对论
人物: 现代物理学家
1.2.3 分子结构

在化学和生物学中,分子可以表示为图结构,其中节点代表原子,边代表化学键。通过这种图结构,可以分析分子的性质、反应机制等。

单键
单键
单键
单键
原子: C
原子: H
原子: H
原子: H
原子: H
1.2.4 交通网络

交通网络由道路和交叉口组成,交叉口作为节点,道路作为边。交通网络图数据可以用于路径规划、交通流量预测等。

道路
道路
道路
道路
交叉口1
交叉口2
交叉口3
交叉口4

1.3 图数据在不同领域的应用实例

1.3.1 社交网络中的推荐系统

通过分析社交网络中的用户关系和行为,可以为用户提供个性化的内容推荐,如好友推荐、商品推荐等。

1.3.2 知识图谱中的信息检索

利用知识图谱,可以实现更加精准的信息检索和问答系统。例如,通过语义理解和关系推理,回答复杂的问题或提供相关的信息。

1.3.3 药物发现中的分子分析

通过图神经网络对分子结构进行分析,可以加速药物发现过程,预测新分子的药效和毒性,提高研发效率。

1.3.4 智能交通系统中的路径优化

利用交通网络图数据,可以优化路径规划,减少交通拥堵,提升交通系统的整体效率。


二、图神经网络的基础概念

在这里插入图片描述

2.1 图神经网络的基本构成和原理

图神经网络(Graph Neural Networks, GNN)是一类专门用于处理图数据的神经网络模型。它们通过迭代地传递和聚合节点及其邻居的特征信息,从而学习节点和图的表示。GNN的基本构成包括:

  • 节点特征(Node Features):每个节点都有一个特征向量,表示节点的属性信息。
  • 边特征(Edge Features):每条边也可以有一个特征向量,表示边的属性信息。
  • 聚合函数(Aggregation Function):用于从节点的邻居节点中收集信息。
  • 更新函数(Update Function):用于更新节点的特征向量。

2.2 GNN与传统神经网络的区别

与传统的神经网络不同,GNN直接利用图结构进行计算,能够捕捉节点及其邻居之间的复杂关系。主要区别包括:

  • 数据结构:传统神经网络处理的是固定结构的数据(如向量或矩阵),而GNN处理的是不规则的图数据。
  • 信息传递:GNN通过节点之间的边进行信息传递,传统神经网络则通过层与层之间的连接进行信息传递。
  • 节点间的依赖性:GNN能够自然地处理节点之间的依赖关系,而传统神经网络需要通过额外的处理步骤来显式建模这些关系。

2.3 常见的图神经网络模型

2.3.1 图卷积网络(GCN)

图卷积网络(Graph Convolutional Network, GCN)是一种常用的GNN模型,它通过对图进行卷积操作,逐层聚合邻居节点的特征信息。GCN的基本操作如下:

  1. 邻居聚合:每个节点收集其邻居节点的特征。
  2. 特征变换:对聚合后的特征进行线性变换。
  3. 非线性激活:应用非线性激活函数(如ReLU)。

示例代码

import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(in_channels, 16)
        self.conv2 = GCNConv(16, out_channels)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = self.conv2(x, edge_index)
        return F.log_softmax(x, dim=1)
2.3.2 GraphSAGE

GraphSAGE(Graph Sample and Aggregation)是一种可以在大规模图数据上进行训练的GNN模型。它通过采样固定数量的邻居节点来进行特征聚合,从而降低计算复杂度。GraphSAGE的聚合方法包括平均聚合、LSTM聚合和池化聚合。

示例代码

from torch_geometric.nn import SAGEConv

class GraphSAGE(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super(GraphSAGE, self).__init__()
        self.conv1 = SAGEConv(in_channels, 16)
        self.conv2 = SAGEConv(16, out_channels)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = self.conv2(x, edge_index)
        return F.log_softmax(x, dim=1)
2.3.3 图注意力网络(GAT)

图注意力网络(Graph Attention Network, GAT)引入了注意力机制,通过计算节点与其邻居节点之间的注意力权重,来进行加权特征聚合。GAT的核心在于:

  1. 计算注意力系数:通过节点特征计算节点之间的相似度。
  2. 加权聚合:根据注意力系数对邻居节点特征进行加权求和。

示例代码

from torch_geometric.nn import GATConv

class GAT(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super(GAT, self).__init__()
        self.conv1 = GATConv(in_channels, 8, heads=8)
        self.conv2 = GATConv(8 * 8, out_channels, heads=1, concat=False)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.elu(x)
        x = self.conv2(x, edge_index)
        return F.log_softmax(x, dim=1)

2.4 信息传递和聚合机制

GNN通过信息传递和聚合机制,实现节点特征的更新和图结构信息的整合。主要步骤包括:

  1. 消息传递(Message Passing):节点将自身的特征信息发送给其邻居节点。
  2. 特征聚合(Feature Aggregation):节点接收来自邻居节点的特征信息并进行聚合。
  3. 特征更新(Feature Update):根据聚合后的特征信息,更新节点的特征向量。

三、图神经网络的关键技术

在这里插入图片描述

3.1 节点表示学习

节点表示学习是图神经网络的核心任务之一,旨在学习节点的嵌入向量,使其能够捕捉节点的结构和属性信息。这些嵌入向量可以用于下游任务,如节点分类、链接预测和图分类等。

示例代码(使用PyTorch Geometric中的GCN):

import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(in_channels, hidden_channels)
        self.conv2 = GCNConv(hidden_channels, out_channels)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = self.conv2(x, edge_index)
        return x  # 返回节点嵌入向量

# 使用示例
model = GCN(in_channels=34, hidden_channels=16, out_channels=2)

3.2 图卷积运算

图卷积运算是图神经网络的基本操作,通过对图中的节点及其邻居进行卷积操作,实现信息的聚合与传递。常见的图卷积方法包括基于谱的图卷积和基于空间的图卷积。

示例代码(GCN的图卷积运算):

import torch
from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(in_channels, out_channels)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index)
        return x

# 使用示例
model = GCN(in_channels=34, out_channels=16)

3.3 信息传递机制

信息传递机制是指图神经网络中节点之间通过边进行特征信息传递和聚合的过程。该机制包括消息传递和节点更新两个步骤。

示例代码(GraphSAGE的信息传递机制):

import torch
import torch.nn.functional as F
from torch_geometric.nn import SAGEConv

class GraphSAGE(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super(GraphSAGE, self).__init__()
        self.conv1 = SAGEConv(in_channels, hidden_channels)
        self.conv2 = SAGEConv(hidden_channels, out_channels)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = self.conv2(x, edge_index)
        return x

# 使用示例
model = GraphSAGE(in_channels=34, hidden_channels=16, out_channels=2)

3.4 聚合和更新操作

聚合和更新操作是图神经网络中节点特征向量的聚合和更新过程。聚合操作从邻居节点收集特征,更新操作则使用聚合后的特征更新节点的特征向量。

示例代码(GAT的聚合和更新操作):

import torch
import torch.nn.functional as F
from torch_geometric.nn import GATConv

class GAT(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super(GAT, self).__init__()
        self.conv1 = GATConv(in_channels, hidden_channels, heads=8, concat=True)
        self.conv2 = GATConv(hidden_channels * 8, out_channels, heads=1, concat=True)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.elu(x)
        x = self.conv2(x, edge_index)
        return x

# 使用示例
model = GAT(in_channels=34, hidden_channels=8, out_channels=2)

3.5 实际示例:节点分类任务

示例代码(完整的节点分类任务流程):

import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T

# 加载Cora数据集
dataset = Planetoid(root='/tmp/Cora', name='Cora', transform=T.NormalizeFeatures())

class GCN(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(in_channels, hidden_channels)
        self.conv2 = GCNConv(hidden_channels, out_channels)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = self.conv2(x, edge_index)
        return F.log_softmax(x, dim=1)

# 模型初始化
model = GCN(in_channels=dataset.num_node_features, hidden_channels=16, out_channels=dataset.num_classes)
data = dataset[0]
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

# 训练循环
def train():
    model.train()
    optimizer.zero_grad()
    out = model(data)
    loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss.item()

# 测试函数
def test():
    model.eval()
    logits, accs = model(data), []
    for _, mask in data('train_mask', 'val_mask', 'test_mask'):
        pred = logits[mask].max(1)[1]
        acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
        accs.append(acc)
    return accs

for epoch in range(200):
    loss = train()
    train_acc, val_acc, test_acc = test()
    print(f'Epoch: {epoch}, Loss: {loss:.4f}, Train Acc: {train_acc:.4f}, Val Acc: {val_acc:.4f}, Test Acc: {test_acc:.4f}')

总结

图神经网络(GNN)作为一种专门处理图数据的机器学习方法,因其在捕捉复杂关系和结构化数据方面的强大能力,正受到越来越多的关注和应用。本文主要探讨了以下几个方面:

1. 图数据及其应用场景

图数据通过节点和边表示实体及其关系,具有多样性、不规则性和高维性等特征。常见的图数据结构包括:

  • 社交网络:节点表示用户,边表示用户之间的关系。主要用于用户关系分析和个性化推荐。
  • 知识图谱:节点表示实体,边表示实体之间的语义关系。主要用于信息检索和问答系统。
  • 分子结构:节点表示原子,边表示化学键。主要用于药物发现和分子分析。
  • 交通网络:节点表示交叉口,边表示道路。主要用于路径规划和交通优化。

2. 图神经网络的基础概念

图神经网络通过迭代地传递和聚合节点及其邻居的特征信息,来学习节点和图的表示。其基本构成包括:

  • 节点特征和边特征:表示节点和边的属性信息。
  • 聚合函数和更新函数:用于特征的聚合和更新。

常见的GNN模型有:

  • 图卷积网络(GCN):通过卷积操作聚合邻居节点的特征。
  • GraphSAGE:通过采样邻居节点进行特征聚合。
  • 图注意力网络(GAT):引入注意力机制进行加权特征聚合。

3. 图神经网络的关键技术

关键技术包括:

  • 节点表示学习:通过学习节点的嵌入向量,捕捉节点的结构和属性信息。
  • 图卷积运算:对图中的节点及其邻居进行卷积操作,实现信息的聚合与传递。
  • 信息传递机制:包括消息传递和节点更新两个步骤,实现节点特征的传播和更新。
  • 聚合和更新操作:从邻居节点收集特征并更新节点的特征向量。

通过图神经网络的这些关键技术,可以有效地应用于各种图数据相关的任务,如节点分类、链接预测和图分类等,显著提升了模型的性能和应用的广泛性。

总之,图神经网络为处理复杂的图数据提供了强大的工具,广泛应用于社交网络、知识图谱、化学分子和交通网络等领域,展现出了巨大的潜力和价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/716179.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

流量卡怎么办理的攻略

一、确定需求 在办理流量卡之前,你需要明确自己的需求。根据不同的使用场景,你可能需要考虑以下几个方面: 月租费用:不同运营商提供的流量卡套餐价格各异,从低至19元到高达199元不等。 流量大小:从30GB到3…

ChromeDriver新手教程:一步步指导Chrome 114到127版本的驱动安装

114之前版本下载链接在这里 ​​​​​​125以后版本下载链接在此,只有后面status是绿色对勾的才可以下载,驱动大版本一致就可以使用,不需版本号一模一样;下载所需版本只需点击对应的版本名称即可跳转到对应版本的下载位置。 以…

同三维T80004JEH2-4K60 双路4K60 HDMI解码器

输出:2路HDMI2路3.5音频,最高支持1路4K60HDMI输出 可以同源/独立分屏输出两种模式可选:对应两个HDMI输出一样和不一样的信号 同源可以解码36路网络流(1/4/9/16/25/36),两个HDMI输出一样的信号&#xff…

《骑行健身:“柳叶刀”研究揭示的健康与经济双赢策略》

在这个物价飞涨、经济压力日益加重的时代,普通人如何在不增加额外负担的情况下提升生活质量?《柳叶刀》的最新研究为我们揭开了一个意想不到的秘密:坚持健身,尤其是骑行,竟等同于每年为自己赚取了一笔不小的财富。这一…

表格识别工具哪个好?简单操作,一键识别表格

随着2024年高考的圆满结束,考生们迎来了新的挑战——志愿填报。这不仅是一个技术活,更是一个信息战。 面对海量的高校信息和复杂的数据表格,考生们需要一种快速、准确的方法来整理和分析这些数据。幸运的是,现代科技提供了多种表…

【初阶数据结构】深入解析单链表:探索底层逻辑(无头单向非循环链表)

🔥引言 本篇将深入解析单链表:探索底层逻辑,理解底层是如何实现并了解该接口实现的优缺点,以便于我们在编写程序灵活地使用该数据结构。 🌈个人主页:是店小二呀 🌈C语言笔记专栏:C语言笔记 &…

【软件测试入门】软件测试那些事

在日常生活中,我们早已习惯于各类软件带来的便捷与效率,从手机里的应用程序到电脑上的办公软件,它们无声地编织着现代社会的运作网络。然而,每一款流畅运行、体验优良的软件背后,都离不开一个关键环节——软件测试。《…

同三维T80004EH-N HDMI高清NDI编码器

1路HDMI 1路3.5音频输入,支持NDI 产品简介: 同三维T80004EH-N 高清HDMI编码器是专业的NDI高清音视频编码产品,该产品支持1路高清HDMI音视频采集功能,1路3.5MM独立音频接口采集功能。编码输出双码流H.265/H.264格式,音频MP3/AAC格…

SRM供应商管理系统建设方案及源码实现(方案+源码)

1. 供应商管理 2. 采购需求管理 3. 采购寻源管理 4. 采购合同管理 5. 采购订单管理 6. 采购协同管理 7. 外部商城采购管理 8. 报表查询管理 9. 系统管理 10. 集成管理 资料获取:本文末个人名片。

免费分享一套SpringBoot+Vue房地产销售管理系统【论文+源码+SQL脚本+PPT+开题报告】,帅呆了~~

大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue房地产销售管理系统,分享下哈。 项目视频演示 【免费】SpringBootVue房地产销售管理系统 Java毕业设计_哔哩哔哩_bilibili【免费】SpringBootVue房地产销售管理系统 Java毕业设计…

【解决方案】数据采集工作站数据传不上去?

数据采集工作站扮演着至关重要的角色,它们负责收集、处理和传输各种传感器和设备的数据。然而,有时会遇到数据传输失败的问题。本文将详细探讨数据采集工作站数据传不上去的可能原因及其解决方案。(更多了解采集器设备可前往苏州稳联&#xf…

【Android】安卓开发的前景

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…

【elementui源码解析】如何实现自动渲染md文档-第二篇

目录 1.概要 2.引用文件 1)components.json 2)json-template/string 3)os.EOL 3.变量定义 4.模版填充 5.MAIN_TEMPLATE填充 6.src下的index.js文件 1)install 2)export 7.总结 所有章节: 【el…

【Spring】1. Maven项目管理

📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 |《MySQL探索之旅》 |《Web世界探险家》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更…

电子货架标签:零售业的未来趋势

随着科技的飞速发展,传统零售业正经历着一场前所未有的变革。电子货架标签作为零售业的一项创新技术,正在以惊人的速度改变着消费者的购物体验,同时也为零售商带来了巨大的商业机遇。本文将探讨电子货架标签的发展现状、优势以及对零售业未来…

【可控图像生成系列论文(一)】MimicBrush 港大、阿里、蚂蚁集团合作论文解读

背景:考虑到用户的不同需求,图像编辑是一项实用而富有挑战性的任务,其中最困难的部分之一是准确描述编辑后的图像应该是什么样子。 创新点:在本文作者提出了一种新的编辑形式,称为模仿编辑,以帮助用户更方…

post为什么会发送两次请求详解

文章目录 导文跨域请求的预检复杂请求的定义服务器响应预检请求总结 导文 在Web开发中,开发者可能会遇到POST请求被发送了两次的情况,如下图: 尤其是在处理跨域请求时。这种现象可能让开发者感到困惑,但实际上它是浏览器安全机制…

AI数据分析:根据Excel表格数据进行时间序列分析

ChatGPT中输入提示词: 你是一个Python编程专家,要完成一个Python脚本编写的任务,具体步骤如下: 读取Excel表格:"F:\AI自媒体内容\AI行业数据分析\toolify月榜\toolify2023年-2024年月排行榜汇总数据.xlsx"…

SQL 表连接(表关联)

目录 一、INNER JOIN(内连接,等值连接) 二、LEFT JOIN(左连接) 三、RIGHT JOIN(右连接): 一、INNER JOIN(内连接,等值连接) 用途:获取两个表中字段能匹配上…

【stable diffusion】ComfyUI扩展安装以及”127.0.0.1拒绝了我们的连接请求“解决记录

目录 扩展安装”127.0.0.1拒绝了我们的连接请求“解决记录操作1操作2操作3操作4总结扩展安装 虽然大家都推荐将扩展包直接放到extension文件夹的方式,但我还是推荐直接在sd webui的扩展处下载,酱紫比较好维护一点,我个人感觉。 按照上图顺序点击会出现”URLError: <url…