Redis 键空间迭代 Scan

引言

在平时线上Redis维护工作中,有时候需要从Redis实例成千上万的key中找出特定前缀的key列表来手动处理数据,可能是修改他的值,也可能是删除key。

Redis提供了一个简单暴力的指令keys用来列出所有满足特定正则字符串规则的key。

127.0.0.1:6379> set codehole1 a 
OK
127.0.0.1:6379> set codehole2 b 
OK
127.0.0.1:6379> set codehole3 c 
OK
127.0.0.1:6379> set code1hole a 
OK
127.0.0.1:6379> set code2hole b 
OK
127.0.0.1:6379> set code3hole b 
OK
127.0.0.1:6379> keys *
1) "codehole1"
2) "code3hole"
3) "codehole3"
4) "code2hole"
5) "codehole2"
6) "code1hole"
127.0.0.1:6379> keys codehole* 
1) "codehole1"
2) "codehole3"
3) "codehole2"
127.0.0.1:6379> keys code*hole 
1) "code3hole"
2) "code2hole"
3) "code1hole"

这个指令使用很简单,提供一个简单的正则字符串即可,但是有明显的两个缺点

  • 没有offset、limit参数,一次性吐出所有满足条件的key,万一实例中有几百w个key满足条件
  • keys算法是遍历算法,复杂度为O(n), 如果实例中有千万级以上的key,这个指令就会导致Redis服务卡顿,所有读写Redis的其他指令都会被延后甚至会超时报错。因为Redis是单线程程序,顺序执行所有指令,其他指令必须等到当前的keys指令执行完后才可以继续。

Redis为了解决这个问题,在2.8版本中引入了Scan指令,Scan相比keys具有以下特点:

  • 复杂度也是O(n),但是他是通过游标分步进行的,不会阻塞线程
  • 提供limit参数,可以控制每次返回结果的最大条数,limit只是一个hint(优化提示),返回的结果可多可少。
  • 同keys一样,他也可以提供模式匹配功能。
  • 服务器不需要为游标保存状态,游标唯一状态就是scan返回给客户端的游标整数
  • 返回的结果可能会有重复,需要客户端去重
  • 遍历的过程中如果有数据修改,改动后的数据能不能遍历到是不确定的。
  • 单次返回的结果是空的并不意味着遍历结束,而要看返回的游标值是否为零。

Scan基础使用

向Redis里插入10000条测试数据

import redis
client = redis.StrictRedis() 
for i in range(10000):
  client.set("key%d" % i, i)

目标找出以key99开头key列表。
scan参数提供了三个参数,分别是**cursor整数值;key的正则模式;遍历的limit hint**。第一次遍历时,cursor值为0,然后将返回结果中第一个整数值作为下一次遍历的cursor。一直遍历到返回的cursor值为0时结束。

127.0.0.1:6379> scan 0 match key99* count 1000 
1) "13976"
2) 1) "key9911" 
   2) "key9974" 
   3) "key9994"
   。。。。。。。
127.0.0.1:6379> scan 13976 match key99* count 1000 
。。。。
127.0.0.1:6379> scan 11687 match key99* count 1000 
1) "0" #返回的游标为0,表示遍历结束   

注意:虽然每次提供的limit是1000,但是返回的结果只有10个左右,因为这个limit不是限定返回结果的数量,而是限定服务器单次遍历的字典槽位数量(约等于)如果将limit设置为10,可能会发现返回的结果是空的,但是游标值不为0,意味着遍历还没结束。

字典的结构

在这里插入图片描述
在Redis中所有的key都存储在一个很大的字典中,这个字典的结构和Java中的HashMap一样,是数组+链表结构,第一维数组的大小总是2^n(n>=0),扩容一次数组大小空间加倍,也就是n++.

scan指令返回的游标就是第一维数组的位置索引,我们将这个位置索引称为槽(slot)。如果不考虑字典的扩容缩容,直接按数组下标挨个遍历即可。limit参数表示需要遍历的槽位数,之所以返回的结果可多可少,是因为不是所有的槽位上都会挂接链表,有些槽位可能是空的,还有些槽位挂接的链表上的元素可能有多个。每一次遍历都会将limit数量的槽位上挂接的所有链表元素进行模式匹配过滤后,一次性返回给客户端。

scan遍历顺序

scan的遍历顺序非常特别,他不是从第一维数组的第0位一直遍历到末尾,而是采用了高位进位加法来遍历。之所以使用这样特殊的方式进行遍历,是考虑到字典的扩容和缩容时避免槽位的遍历重复和遗漏。

普通加法和高位进位加法的区别
高位进位加法从左边加,进位往右边移动,同普通加法正好相反,但是最终他们都会遍历所有槽位并且没有重复。

假设当前二进制表示为000,则通过高位进位加法后是100(最高位加1,无进位)。在经过高位进位加是010(最高位加1,有进位,向右传递1)

字典扩容

Java中的HashMap有扩容的概念,当loadFactor达到阈值时,需要重新分配一个新的2倍大小的数组,然后将所有的元素全部rehash挂到新的数组下面。rehash就是将元素的hash值对数组长度进行取模运算,因为长度变了,所以每个元素挂接的槽位可能也发生了变化。又因为数组的长度是2^n次方,所以取模运算等价于位与操作。

位与操作(&):对于每一对对应的位,如果两个对应位都是 1,则结果为 1,否则为 0。

假设当前字典的数组长度由8位扩容到16位,那么3号槽位011将会被rehash到3号槽位和11号槽位,也就是说该槽位链表中大约有一半的元素还是3号槽位,其他元素会放到11号槽位,11这个数字的二进制是1011,也就是对3的二进制011增加了一个高位1.
在这里插入图片描述
更抽象一点说,假设开始槽位的二进制数是xxx,那么该槽位中的元素将被rehash到0xxx或者1xxx(xxx+8)中。如果字典长度由16位扩容到32位,那么对于二进制槽位xxxx中的元素将被rehash到0xxxx和1xxxx中。

对比扩容缩容前后的遍历顺序

在这里插入图片描述
观察这张图,发现采用高位进位加法的遍历顺序,rehash后的槽位在遍历顺序上是相邻的。

假设当前即将遍历110这个位置,那么扩容后,当前槽位上的所有元素对应的新槽位是0110,1110,也就是在槽位的二进制数增加一个高位0或者1.这时,我们可以直接从0110这个槽位开始往后继续遍历,0110槽位之前的所有槽位都是已经遍历过的,这样就可以避免扩容后对已经遍历过的槽位进行重复遍历。

在考虑缩容,假设当前即将遍历110这个位置,那么缩容后,当前槽位所有的元素对应的新槽位是10,也就是去掉槽位二进制最高位。这时,我们可以直接从10这个槽位继续向后遍历,10槽位之前的所有槽位都是已经遍历过的。这样就可以避免缩容的重复遍历。不过缩容还是不太一样,他会对图中010这个槽位上的元素进行重复遍历,因为缩容后10槽位的元素是010和110上挂接的元素的融合。

渐进式rehash

Java中的HashMap在扩容时会一次性将旧数组下挂接的元素全部转移到新数组下面。如果HashMap中元素特别多,线程就会出现卡顿现象,Redis为了解决这个问题,采用渐进式rehash。

他会同时保留旧数组和新数组,然后在定时任务中以及后续对hash的指令操作中渐渐的将旧数组中挂接的元素迁移到新数组上。这意味着要操作处于rehash中的字典,需要同时访问新旧两个数组结构,如果在旧数组下面找不到元素,还需要去新数组下面寻找。

scan也需要考虑这个问题,对于rehash中的字典,需要同时扫描新旧槽位,然后将结果融合后返回给客户端。

更多的scan指令

scan指令是一系列指令,除了可以遍历所有的key之外,还可以对指定的容器集合进行遍历。比如zscan遍历zset集合元素,hscan遍历hash字典中的元素、sscan遍历set集合中的元素。

他们的原理同scan都会类似,因为hash底层就是字典,set也是一个特殊的hash(所有的value都指向同一个元素),zset内部也使用了字典来存储所有的元素内容。

大key扫描

有时候会因为业务人员使用不当,在Redis实例中会形成很大的对象,比如一个很大的hash,一个很大的zset这都是经常出现的。这样的对象对Redis的集群数据迁移带来了很大的问题,因为在集群环境下,如果某个key太大,会导致迁移卡顿。另外,在内存分配上,如果一个key太大,那么当他需要扩容时,会一次性申请更大的一块内存,这也会导致卡顿。如果这个大key被删除,内存会一次性回收,卡顿现象再次发生。

平时的业务开发中,要尽量避免大key的产生

如果观察到Redis的内存大起大落,这极有可能是因为大key导致的,这时候就需要定位出具体是哪个key,进一步定位出具体的业务来源,然后改进相关业务代码设计。

如何定位大key

为了避免对线上Redis带来卡顿,需要用到scan指令,对于扫描出来的每一个key,使用type指令获得key的类型,然后使用相应数据结构的size或者len方法来得到他的大小,对于每一种类型,保留大小的前N名作为扫描结果展示出来。
上面这样的过程需要编写脚本,比较繁琐,可以使用如下指令进行扫描。

redis-cli -h 127.0.0.1 -p 7001 –-bigkeys -i 0.1

–bigkeys: 这是一个特殊的参数,用于在 Redis 数据库中扫描并报告最大的键。这个功能可以帮助识别可能占用过多内存的键。

-i 0.1: 这个参数设置 redis-cli 命令的采样间隔,单位是秒。这里设置为 0.1 秒,意味着 redis-cli 在执行 --bigkeys 操作时每 0.1 秒采样一次,以减少对 Redis 服务器性能的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/714353.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

26.1 WEB框架介绍

1. Web应用程序 1.1 应用程序有两种模式 应用程序的架构模式主要分为两种: C/S (客户端/服务器端)和B/S(浏览器/服务器端). * 1. C/S模式, 即客户端/服务器模式(Client/Server Model): 是一种分布式计算模式.它将应用程序的功能划分为客户端和服务器端两部分.在这种模式下, 客…

几种经典排序算法

几种经典排序算法 插入排序折半插入排序法 选择排序冒泡排序希尔排序堆排序二路归并排序快速排序 在介绍排序之前,先来说说,研究不同的排序主要是要研究他们的哪些不同: 时间性能。即排序过程中元素之间的比较次数与元素移动次数。我们此次讨…

【最新鸿蒙应用开发】——鸿蒙中的“Slot插槽”?@BuilderParam

构建函数-BuilderParam 传递 UI 1. 引言 BuilderParam 该装饰器用于声明任意UI描述的一个元素,类似slot占位符。 简而言之:就是自定义组件允许外部传递 UI Entry Component struct Index {build() {Column({ space: 15 }) {SonCom() {// 直接传递进来…

IPv6 ND 协议功能概述

ND 协议功能概述 ND(Neighbor Discovery,邻居发现)协议是 IPv6 的一个关键协议,它综合了 IPv4 中的 ARP,ICMP 路由发现和 ICMP 重定向等协议,并对它们做了改进。 作为 IPv6 的基础性协议,ND 协…

ppt添加圆角矩形,并调整圆角弧度方法

一、背景 我们看的论文,许多好看的图都是用PPT做的,下面介绍用ppt添加圆角矩形,并调整圆角弧度方法。 二、ppt添加圆角矩形,并调整圆角弧度 添加矩形: 在顶部工具栏中,点击“插入”选项卡。 在“插图”…

冒泡排序知识点

排序的基本概念 排序是计算机内经常进行的一种操作,其目的是将一组“无序”的记录调整为“有序”的记录序列。 常用的排序例子 8 7 1 5 4 2 6 3 9 把上面的这个无序序列变为有序(升序或者降序)序列的过程。 1 2 3 4 5 6 7 8 9&#xff0…

Spring运维之boo项目表现层测试加载测试的专用配置属性以及在JUnit中启动web服务器发送虚拟请求

测试表现层的代码如何测试 加载测试的专用属性 首先写一个测试 假定我们进行测试的时候要加一些属性 要去修改一些属性 我们可以写一个只在本测试有效的测试 写在配置里 测试 打印输出 我们把配置文件里面的配置注释掉后 我们同样可以启动 package com.example.demo;impo…

代码随想录——组合总和Ⅱ(Leetcode 40)需要回顾

题目链接 回溯 本题的难点在于:集合(数组candidates)有重复元素,但还不能有重复的组合。 思想:元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。所以要去重的是同一树…

购物车店铺列表查询流程

购物车店铺列表查询流程 购物车结算流程图

嵌入式门槛高不高,工资怎么样?

一般来说,嵌入式岗位的准入门槛其实并不是特别高。通常情况下,只要能够熟练掌握 C 语言编程以及单片机相关知识,就能够去制作一些较为简单的电子产品,由此可见其门槛相对而言是比较低的,相应的薪水可能也不会特别高。 …

I2C 总线通信技术基础

1.0 I2C 技术基础 使用总线的目的:采用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高,同时,系统的更改和扩充变的极为容易。 通信中常用的串行拓展总线 I2C(Inter-Integrated Circuit )总线…

C语言程序设计-6 循环控制

C语言程序设计-6 循环控制 循环结构是程序中一种很重要的结构。其特点是,在给定条件成立时,反复执行某程序 段,直到条件不成立为止。给定的条件称为循环条件,反复执行的程序段称为循环体。C语 言提供了多种循环语句&a…

计算机网络知识点全面总结回顾

物理层 OSI模型:数据链路层(流量控制),从传输层开始端到端;每一层的元素都称为实体,同一层的是对等实体;三个重要概念:服务(下层为上层提供调用)&#xff0c…

【Linux】进程间通信1——管道概念,匿名管道

1.进程间通信介绍 进程是计算机系统分配资源的最小单位(严格说来是线程)。每个进程都有自己的一部分独立的系统资源,彼此是隔离的。为了能使不同的进程互相访问资源并进行协调工作,才有了进程间通信。 进程间通信,顾名…

1055 集体照(测试点3, 4, 5)

solution 从后排开始输出,可以先把所有的学生进行排序(身高降序,名字升序),再按照每排的人数找到中间位置依次左右各一个进行排列测试点3, 4, 5:k是小于10的正整数,则每…

记录一次root过程

设备: Redmi k40s 第一步, 解锁BL(会重置手机系统!!!所有数据都会没有!!!) 由于更新了澎湃OS系统, 解锁BL很麻烦, 需要社区5级以上还要答题。 但是,这个手机…

人工智能历史与现状

1 人工智能历史与现状 1.1 人工智能的概念和起源 1.1.1 人工智能的概念 人工智能 (Artificial Intelligence ,AI)是一门研究如何使计算机 能够模拟人类智能行为的科学和技术,目标在于开发能够感知、理解、 学习、推理、决策和解决问题的智能机器。人工智能的概念主要包含 以…

理解DDD设计

DDD的理解 领域驱动设计(Domain-Driven Design,DDD)是一种软件开发方法论,强调将业务领域作为软件设计的核心,以便更好地满足业务需求。DDD认为,软件开发的核心是理解业务,而不是实现技术。在D…

容器镜像外网同步方案

目录 一、目的 二、安装nexus 1、购买香港云主机​编辑 2、安装nexus 3、启动nexus 服务 4、放行安全组 三、配置nexus 1、登录nexus管理页面 2、修改nexus密码 3、创建 Blob 存储空间(可选) 4、创建 镜像代理仓库 5、Realms配置 四、拉取镜像 1、配置docker 2、…

【Python】Python实现解压rar文件

Python实现解压rar文件 零、需求 最近在开发一个填分数的应用,需要用到selenium,那么自然需要用到浏览器,浏览器内置到应用中,但是上传到GitCode的时候被限制了,单个文件大小只能是10M以内。所以只能压缩&#xff0c…