CNN经典网络模型之GoogleNet论文解读

目录

1. GoogleNet

1.1 Inception模块

1.1.1 1x1卷积

1.2 辅助分类器结构

1.3 GoogleNet网络结构图


1. GoogleNet

GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。它在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异的成绩,引入了"Inception"模块,这是一种多尺度卷积核并行结构,可以增强网络对不同尺度特征的感知能力。

1.1 Inception模块

GoogleNet引入了"Inception"模块,该模块使用不同尺度的卷积核来同时捕获不同尺度的特征。这有助于网络更好地适应不同大小的对象和结构。每个Inception模块包含多个并行的卷积层和池化层,然后将它们的输出在通道维度上连接起来。

在这里插入图片描述

 左图呢,是论文中提出的inception原始结构,右图是inception加上降维功能的结构。

先看左图,inception结构一共有4个分支,也就是说我们的输入的特征矩阵并行的通过这四个分支得到四个输出,然后在将这四个输出在深度维度(channel维度)进行拼接得到我们的最终输出(注意,为了让四个分支的输出能够在深度方向进行拼接,必须保证四个分支输出的特征矩阵高度和宽度都相同)。

  • 分支1是卷积核大小为1x1的卷积层,stride=1,
  • 分支2是卷积核大小为3x3的卷积层,stride=1,padding=1(保证输出特征矩阵的高和宽和输入特征矩阵相等),
  • 分支3是卷积核大小为5x5的卷积层,stride=1,padding=2(保证输出特征矩阵的高和宽和输入特征矩阵相等),
  • 分支4是池化核大小为3x3的最大池化下采样,stride=1,padding=1(保证输出特征矩阵的高和宽和输入特征矩阵相等)

再看右图,对比左图,就是在分支2,3,4上加入了卷积核大小为1x1的卷积层,目的是为了降维,减少模型训练参数,减少计算量。

注意: 如果保持输入的图像尺寸不变,在步长为1的情况下,padding=(卷积核大小-1)/  2 。

1.1.1 1x1卷积

1x1卷积: 1x1卷积在Inception模块中被广泛使用,它用于降低通道数,从而减少计算量。1x1卷积的作用类似于将不同通道的特征进行线性组合,以创建一种综合特征表示。

同样是对一个深度为512的特征矩阵使用65个大小为5x5的卷积核进行卷积,不使用1x1卷积核进行降维话一共需要819200个参数,如果使用1x1卷积核进行降维一共需要50688个参数,明显少了很多。

在这里插入图片描述

 

1.2 辅助分类器结构

为了解决梯度消失问题,GoogleNet在中间某些层添加了辅助分类器。这些辅助分类器有助于训练过程中的梯度传播,同时还可以提供网络中间层的监督信号,有助于更快地训练网络。

有两个辅助分类器,结构如下图:

在这里插入图片描述

 这两个辅助分类器的输入分别来自Inception(4a)和Inception(4d)。

  • 辅助分类器的第一层是一个平均池化下采样层,池化核大小为5x5,stride=3
  • 第二层是卷积层,卷积核大小为1x1,stride=1,卷积核个数是128
  • 第三层是全连接层,节点个数是1024
  • 第四层是全连接层,节点个数是1000(对应分类的类别个数)

1.3 GoogleNet网络结构图

每个卷积层的卷积核个数如何确定呢,下面是原论文中给出的参数列表,对于我们搭建的Inception模块,所需要使用到参数有#1x1, #3x3reduce, #3x3, #5x5reduce, #5x5, poolproj,这6个参数,分别对应着所使用的卷积核个数。

在这里插入图片描述

 其中#1x1对应着分支1上1x1的卷积核个数,#3x3 reduce对应着分支2上1x1的卷积核个数,#3x3对应着分支2上3x3的卷积核个数,#5x5 reduce对应着分支3上1x1的卷积核个数,#5x5对应着分支3上5x5的卷积核个数,pool proj对应着分支4上1x1的卷积核个数。

如下图所示:

在这里插入图片描述

 下面是GoogleNet整体网络结构如下图:

在这里插入图片描述

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/71339.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SWIG使用方法

安装 下载 swigwin软件包,解压到合适的位置,然后将路径添加到环境变量即可。 编写C代码 //vector.hpp class Vector { private:int x;int y; public:Vector(int,int);double abs();void display(); };//vector.cpp #include "vector.hpp" …

中介者模式(C++)

定义 用一个中介对象来封装(封装变化)一系列的对象交互。中介者使各对象不需要显式的相互引用(编译时依赖->运行时依赖),从而使其耦合松散(管理变化),而且可以独立地改变它们之间的交互。 应用场景 在软件构建过程中,经常会出现多个对象…

【Linux】TCP协议简介

TCP协议简介 TCP协议格式面向连接1.连接管理机制2.包序管理 可靠传输1.保证数据可靠到达对端2.保证数据的传输效率 面向字节流TCP粘包问题 TCP协议格式 16位源端口号和16位目的端口号:标识数据从哪个进程来,到哪个进程…

二叉树的讲解

💓博主个人主页:不是笨小孩👀 ⏩专栏分类:数据结构与算法👀 刷题专栏👀 C语言👀 🚚代码仓库:笨小孩的代码库👀 ⏩社区:不是笨小孩👀 🌹欢迎大家三连关注&…

设计模式行为型——状态模式

目录 状态模式的定义 状态模式的实现 状态模式角色 状态模式类图 状态模式举例 状态模式代码实现 状态模式的特点 优点 缺点 使用场景 注意事项 实际应用 在软件开发过程中,应用程序中的部分对象可能会根据不同的情况做出不同的行为,把这种对…

windows环境下打印机无法打印的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

勘探开发人工智能技术:机器学习(1)

0 提纲 2.1 什么是机器学习 2.2 不确定性 2.3 数据类型 2.4 分类、回归、聚类 2.5 分类问题的训练与测试 2.6 性能评价指标 1 什么是机器学习 对于西瓜这个抽象类来说,它具有“色泽”,“根蒂”,“敲声”三个属性: 通过观察这个…

[SpringBoot3]基础篇

二、SpringBoot基础篇 2.1什么是SpringBoot SpringBoot是目前流行的微服务框架,倡导“约定优于配置”,其目的是用来简化新Spring应用的初始化搭建以及开发过程。SpringBoot提供了很多核心的功能,比如自动化配置starter(启动器&a…

微服务与Nacos概述-2

微服务间消息传递 微服务是一种软件开发架构,它将一个大型应用程序拆分为一系列小型、独立的服务。每个服务都可以独立开发、部署和扩展,并通过轻量级的通信机制进行交互。 应用开发 common模块中包含服务提供者和服务消费者共享的内容 provider模块是…

Ansible的安装和配置

安装和配置 Ansible 安装所需的软件包 创建名为 /home/greg/ansible/inventory 的静态清单文件,以满足以下要求: 172.25.250.9 是 dev 主机组的成员 172.25.250.10 是 test 主机组的成员 172.25.250.11 和 172.25.250.12 是 prod 主机组的成员 172.2…

闭环控制方法及其应用:优缺点、场景和未来发展

闭环控制是一种基本的控制方法,它通过对系统输出与期望值之间的误差进行反馈,从而调整系统输入,使系统输出更加接近期望值。闭环控制的主要目标是提高系统的稳定性、精确性和鲁棒性。在实际应用中,闭环控制有多种方法,…

深入浅出:MyBatis的使用方法及最佳实践

这里写目录标题 添加MyBatis框架⽀持配置连接字符串和MyBatis配置连接字符串配置 MyBatis 中的 XML 路径 添加业务代码创建数据库和表添加用户实体类添加 mapper 接⼝添加 UserMapper.xml添加 Service层添加 Controller层 增删改操作增加操作删除操作修改操作 添加MyBatis框架⽀…

无感部署 - 蓝绿部署、AB测试、灰度发布

蓝绿部署 蓝绿部署(Blue-Green Deployment)是一种软件发布和部署的策略,旨在实现无缝的应用程序升级和回滚。在蓝绿部署中,同时存在两个环境:一个是当前稳定的生产环境(蓝色环境),另…

Spring Cloud 智慧工地源码(PC端+移动端)项目平台、监管平台、大数据平台

智慧工地源码 智慧工地云平台源码 智慧建筑源码 “智慧工地”是利用物联网、人工智能、云计算、大数据、移动互联网等新一代信息技术,彻底改变传统建筑施工现场参建各方现场管理的交互方式、工作方式和管理模式,实现对人、机、料、法、环的全方位实时监…

国产航顺HK32F030M: 基于NTC负温度系数的温度计

前言: 家里的一个儿童澡盆附带的温度计坏掉了,拆解后发现这东西做的真垃圾!索性自己做一个。拆下了里面的NTC热敏电阻,但是不知道NTC的性能参数,经过测量与查资料后,采用用中位值滤波 、 Steinhart-Hart方…

swagger 3.0 学习笔记

引入pom <dependency><groupId>io.springfox</groupId><artifactId>springfox-boot-starter</artifactId><version>3.0.0</version></dependency>配置 import io.swagger.models.auth.In; import io.swagger.v3.oas.annotati…

三级城市展示省市区树

展示效果 数据库展示 业务代码 /*** 省市区树*/VLicenseApiOperation("查询经纬度")ApiImplicitParam(name "FnCity", value "省市区树", dataType "FnCity")GetMapping("/districtlist")public AjaxResult districtlist…

strlen和sizeof的区别

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家了解C语言中的sizeof和strlen&#xff08;仅此一篇让你明白它们两的差别&#xff09;&#xff0c;如果大家觉得我写的不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 文章目录 strlensizeof 在…

Simulink仿真模块 -Scope

Scope模块的作用是显示仿真过程中生成的信号。它包含在以下库中: 库: Simulink / Commonly Used BlocksSimulink / SinksHDL Coder / Commonly Used BlocksHDL Coder / Sinks 如图所示: Simulink Scope 模块和 DSP System Toolbox™ Time Scope 模块显示时域信号。…

【APITable】教程:创建并运行一个自建小程序

1.进入APITable&#xff0c;在想要创建小程序的看板页面点击右上角的【小程序】&#xff0c;进入小程序编辑页面。 2.创建一个新的小程序区。 点击【 添加小程序】 点击创建小程序&#xff0c;选择模板&#xff0c;输入名字。 3.确定后进入小程序部署引导页面。 4.打开Xshell 7…