「TCP 重要机制」三次握手四次挥手

🎇个人主页:Ice_Sugar_7
🎇所属专栏:计网
🎇欢迎点赞收藏加关注哦!

三次握手&四次挥手

  • 🍉连接管理
    • 🍌三次握手
    • 🍌意义
    • 🍌四次挥手
    • 🍌TCP 状态转换
      • 🥝LISTENING 状态
      • 🥝ESTABLISHED 状态
      • 🥝CLOSE_WAIT & TIME_WAIT 状态

🍉连接管理

有连接是 TCP 的特点之一

socket = new Socket(serverIp,serverPort);

执行这行代码其实就是在建立连接,不过这只是在调用 socket api,真正建立连接是在操作系统内核完成的,见下图:

在这里插入图片描述

🍌三次握手

内核通过三次握手来完成建立连接的过程
在此之前得先介绍一种数据报—— syn

syn 是一个特殊的 TCP 数据报,它没有载荷,因此不会携带应用层数据;
同时标志位中的 SYN 值为 1
虽说无载荷,但是它也有 IP 报头、以太网数据帧帧头、TCP 报头等。其中 TCP 报头和 IP 报头分别包含客户端自己的端口和 IP

syn 其实是 synchronized 的缩写,它是多线程的常客,意为同步。多线程使用 synchronized 加锁实现的同步是协调多个线程间的执行顺序;而 TCP 这里的同步是指进入连接状态,客户端和服务器相互配合完成一系列工作。可以理解为 syn 就是客户端给服务器打个招呼,表示要与它建立连接,服务器收到后要发个 ack 回应一下,同时发个 syn 表示同意连接

在这里插入图片描述

🍌意义

  1. 三次握手可以初步确认通信链路是否畅通,这是确保可靠性的前提条件
  2. 三次握手可以验证通信双方发送能力和接收能力是否正常

在这里插入图片描述
由此衍生出一道面试题:能否握两次手?四次呢?
A:两次肯定不行,因为服务器这边还无法确认自己的发送能力和对端的接收能力是否正常,因此需要服务端再来一次握手,把信息同步给服务器;四次可以,但是没必要

  1. 三次握手的过程中也会协商一些必要的参数
    通信是客户端和服务器两端共同配合完成的,所以有些参数要进行协商,这些参数往往是在“选项”中体现的

在这里插入图片描述
我们前面说“选项”可有可无,最少占 0 个字节,最多占 40 字节(报头最大长度为 60,去掉固定的 20,就剩下 40 字节)。选项中的信息我们不用去深究,不过有一个信息是比较关键的 —— TCP 通信的序号起始值
TCP 在一次通信过程中,序号不是从 0 或 1 开始的,而是先选择一个比较大的数字,从它开始计算,而且即使是同一个客户端和服务器,每次连接的起始值都不同。这里的“不同”不是随机给一个值,而是经过一系列的分配策略得出的。这样做的好处在于避免处理到上次连接的数据报
数据报在传输过程中遇到阻塞,迟迟没有到达对端,可能在本次连接断开后还没到达,等到下次连接建立时才到达,但此时已经是别的客户端了,不适合处理上次连接的数据报,应该把它丢弃


🍌四次挥手

每个客户端/服务器都要保存对端的信息,这些信息需要使用一定的数据结构来存储,断开连接的本质就是把对端的信息从数据结构中删掉/释放掉
四次挥手中,服务器和客户端其中一方先调用 socket.close(),然后触发 FIN,即向对端发送 FIN 结束报文段
(除了调用 close(),结束进程也会触发 FIN。这两种方式本质都是关闭 socket 文件)
假设是客户端请求断开连接,那么四次挥手流程如下:

在这里插入图片描述
注意四次挥手中间的两步不像三次握手,不一定可以合并

在这里插入图片描述
在这里插入图片描述
下面总结一下这两者之间的相似之处和不同之处
相似点:
都是通信双方中某一方给对方发起一个 syn/fin,交互过程中中间两个数据报是由同一个机器发出的
不同点:

  1. 三次握手中间两次可以合并为一次;四次挥手不一定
  2. 三次握手一定是客户端主动发起连接请求;而四次挥手可以由客户端或服务器发起

🍌TCP 状态转换

前面说 TCP 服务器和客户端都有一定的数据结构保存连接的信息,在数据结构中有个属性叫作状态,操作系统内核根据不同的状态决定应该干什么

🥝LISTENING 状态

表示服务器创建好 serverSocket,并且绑定好端口号了
设定端口号为 5000,启动服务器后在控制台查询服务器状态,得到如下信息:

在这里插入图片描述

🥝ESTABLISHED 状态

表示客户端和服务器已经建立连接(三次握手结束了)
启动客户端后,再次查询状态:

在这里插入图片描述
接下来看一下三次握手中的状态变化

在这里插入图片描述


🥝CLOSE_WAIT & TIME_WAIT 状态

前者表示接下来代码中需要调用 close 来主动发起 FIN。收到对方的 FIN 后会进入这个状态
本端给对方发起 FIN 后,对端也给本端发 FIN 之后,本端就会进入 TIME_WAIT 状态
主动断开连接的一端会进入 TIME_WAIT 状态;被动断开的一端则是进入 CLOSE_WAIT 状态
接下来看一下四次挥手中的状态变化,假设是客户端主动断开 TCP 连接

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/713265.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入分析 Android BroadcastReceiver (三)

文章目录 深入分析 Android BroadcastReceiver (三)1. 广播消息的优缺点及使用场景1.1 优点1.2 缺点 2. 广播的使用场景及代码示例2.1. 系统广播示例:监听网络状态变化 2.2. 自定义广播示例:发送自定义广播 2.3. 有序广播示例:有序广播 2.4. …

[算法刷题—二分法]寻找插入位置

题目展示: 本道题本身并不是很难,主要是学习和分析二分查找插入位置的方法。 首先大体上分为两种情况: 一.target在待查找的数组之中,返回对应值的下标索引。 二.target不在待查找的数组之中,需要返回target插入位置的索引(原数组有序) 第一种情况不难&#xff…

跟着AI学AI_08 NumPy 介绍

NumPy(Numerical Python)是一个用于科学计算的基础库,它为 Python 提供了支持大规模多维数组和矩阵 NumPy 介绍 NumPy(Numerical Python)是一个用于科学计算的基础库,它为 Python 提供了支持大规模多维数…

最新版点微同城源码34.7+全套插件+小程序前后端(含安装教程)

模板挺好看的 带全套插件 自己耐心点配置一下插件 可以H5可以小程序 源码下载:https://download.csdn.net/download/m0_66047725/89394996 更多资源下载:关注我。

【单元测试】Spring Boot 的测试库

Spring Boot 的测试库 1.了解回归测试框架 JUnit2.了解 assertThat3.了解 Mockito4.了解 JSONPath5.测试的回滚 单元测试(unit test)是为了检验程序的正确性。一个单元可能是单个 程序、类、对象、方法 等,它是应用程序的最小可测试部件。 单…

ATMEGA16读写24C256

代码&#xff1a; #include <mega16.h> #include <stdio.h> #include <i2c.h> #include <delay.h> // Declare your global variables here #define EEPROM_BUS_ADDRESS 0xa0 #asm.equ __i2c_port0x15.equ __sda_bit1 .equ __scl_bit0 #endasm uns…

课设--学生成绩管理系统(二)

欢迎来到 Papicatch的博客 目录 &#x1f40b;引言 &#x1f988;编写目的 &#x1f988;项目说明 &#x1f40b;产品介绍 &#x1f988;产品概要说明 &#x1f988;产品用户定位 &#x1f988;产品中的角色 &#x1f40b; 产品总体业务流程图 &#x1f40b; 产品功…

Pixel Transformer:用像素代替补丁可以提升图像分类精度

在快速发展的人工智能领域&#xff0c;ViTs已成为各种计算机视觉任务的基础模型。ViTs通过将图像划分为小块并将这些小块作为标记来处理图像。6月刚发布一篇论文&#xff0c;引入了一种新颖的方法&#xff0c;即像素级Transformers&#xff0c;它通过将单个像素视为令牌来挑战这…

【深度学习】基于EANet模型的图像识别和分类技术

1.引言 1.1.EANet模型简介 EANet&#xff08;External Attention Transformer&#xff09;是一种深度学习模型&#xff0c;它结合了Transformer架构和外部注意力机制&#xff0c;特别适用于图像分类等计算机视觉任务。以下是关于EANet的详细解释&#xff1a; 1.1.1 定义与背…

2024年了,苹果可以通话录音了

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 6月11日凌晨&#xff0c;苹果在WWDC24大会上&#xff0c;密集输出了酝酿多时的AI应用更新。苹果对通话、对话、图…

从传统到智能:数字孪生在火电厂中的应用

通过图扑 HT 可视化技术数字孪生正在运行的火力发电厂&#xff0c;搭建数字化运营平台&#xff0c;对发电厂进行工厂式精细化的数字化管理&#xff0c;提升企业对整个发电厂业务进行数字化管理能力。

virtualbox扩展磁盘

使用virtualbox搭建虚拟机&#xff0c;如果磁盘不够用了&#xff0c;可以通过以下方式扩展。 扩容磁盘 分区扩展 查看磁盘情况 fdisk -l Disk /dev/sda: 107.4 GB, 107374182400 bytes, 209715200 sectors Units sectors of 1 * 512 512 bytes Sector size (logical/phys…

探索开源世界:2024年值得关注的热门开源项目推荐

文章目录 每日一句正能量前言GitCode成立背景如何使用GitCode如何把你现有的项目迁移至 GitCode&#xff1f;热门开源项目推荐actions-poetry - 管理 Python 依赖项的 GitLab CI/CD 工具项目概述技术分析应用场景特点项目地址 Spider - 网络爬虫框架项目简介技术分析应用场景项…

51单片机STC89C52RC——2.3 两个独立按键模拟控制LED流水灯方向

目的 按下K1键LED流水向左移动 按下K2键LED流水向右移动 一&#xff0c;STC单片机模块 二&#xff0c;独立按键 2.1 独立按键位置 2.2 独立按键电路图 这里要注意一个设计的bug P3_1 引脚对应是K1 P3_0 引脚对应是K2 要实现按一下点亮、再按一下熄灭&#xff0c;我们就需…

使用 Python 进行测试(4)为什么要测试?测什么?

总结 要知道测试的内容&#xff0c;首先要知道测试的原因。下面是测试的几个主要目的&#xff1a; 避免回归质量管理匹配规格淡化责任让你放心学习测试选中一个框 你为什么要测试&#xff1f; 要决定测试什么、测试多少以及以什么顺序测试&#xff0c;您需要首先弄清楚测试的…

QT系列教程(11) TextEdit实现Qt 文本高亮

文本高亮 对于textedit里录入的部分单词我们可以实现高亮&#xff0c;实现高亮主要依赖于QSyntaxHighlighter。 我们先创建一个Qt Application类&#xff0c;类名MainWindow, 然后新增一个C类&#xff0c;类名为MySyntaxHighlighter。 #ifndef MYSYNTAXHIGHLIGHTER_H #define …

优化查询性能:DolphinDB 时间类型数据比较规则详解

在数据库中&#xff0c;时间是一种常见的数据类型。在处理时间数据时&#xff0c;比较操作是非常常见的需求。然而&#xff0c;在不同的场景下&#xff0c;对时间类型数据进行比较时应用的规则不同。本文将从 DolphinDB 支持的时间类型开始&#xff0c;由浅入深分别介绍时间类型…

C++访问Private,Protecd的一些方法总结

前言 在编写C程序中 我们偶尔会碰到这样的三种特殊修改变量值的需求&#xff1a; [1]在不修改类原本的实现下&#xff0c;访问修改类的Private变量 [2]在不修改类原本的实现下&#xff0c;修改类的Protected变量 Private变量访问 public类模版函数特化 这种办法利用了类模…

Qt自定义日志输出

Qt自定义日志输出 简略版&#xff1a; #include <QApplication> #include <QDebug> #include <QDateTime> #include <QFileInfo> // 将日志类型转换为字符串 QString typeToString(QtMsgType type) {switch (type) {case QtDebugMsg: return "D…

全网爆火的AI语音合成工具-ChatTTS,有人已经拿它赚到了第一桶金,送增强版整合包

上篇分享了如何从0到1搭建一套语音交互系统。 其中&#xff0c;语音合成&#xff08;TTS&#xff09;是提升用户体验的关键所在。 不得不说&#xff0c;AI 语音界人才辈出&#xff0c;从之前的Bert-Sovit&#xff0c;到GPT-Sovits&#xff0c;再到最近一周狂揽了 1w Star 的C…