如何区分人工智能生成的图像与真实照片(上)

       随着最先进扩散模型(如Midjourney、Stable Diffusion和Firefly)生成的图像具有高度的逼真度,未经训练的我们很难区分真实照片和AI生成的图像。为了解决这个问题,份指南,帮助读者培养更批判的眼光,识别AI生成图像中经常出现的人工痕迹、不一致性和不可信之处。

       根据AI生成图像中出现的人工痕迹和不合理性的五个高级类别组织了这份2024年的指南:解剖学上的不合理性、风格上的人工痕迹、功能性上的不合理性、违反物理规律和社会文化上的不合理性。然而,并非总是能够轻易地识别图像中的人工痕迹和不合理性,尤其是在肖像图像中。同样,真实的照片有时也会包含看起来不合理或像视觉人工痕迹的元素。本指南的目标是帮助你培养对视觉不一致性的敏锐眼光,并校准你对图像是否由AI生成、真实或太模糊而无法在没有进一步信息的情况下知道的直觉。

      可以在阅读前,先测试一下自己的技能,测试网址如下:

DeepFakes, Can You Spot Them?

     你可以挑出下列图中哪两张是真实照片吗?仔细看看(答案在最后)

1 背景

1.1 AI 图像生成技术发展

  • 从 GAN 到扩散模型:AI 图像生成技术经历了从 GAN 到扩散模型的演变。GAN 是最早用于生成逼真图像的模型,但扩散模型在 2024 年成为主流,能够生成更具表现力和可控性的图像。
  • 扩散模型的工作原理:通过向图像添加噪声并学习逐步去除噪声来生成图像。例如 Midjourney、Stable Diffusion 和 Firefly 等平台都使用扩散模型。

1.2 AI 图像的识别难度

  • 高度逼真:AI 生成的图像可以达到高度逼真的程度,即使是未经训练的人类也难以区分真实照片和 AI 图像。
  • 人工痕迹:尽管 AI 图像非常逼真,但它们往往存在一些人工痕迹,例如人体不合理之处、风格痕迹、功能不合理之处、违反物理原理和社会文化不合理之处。

1.3 影响识别难度的因素

  • 姿势复杂度:姿势复杂的图像更容易出现人工痕迹。
  • 背景细节:背景细节丰富的图像更容易识别,而背景模糊的图像则更难识别。
  • 人数:人数较多的图像更容易出现人工痕迹,因为模型难以处理复杂的人物关系。
  • 面部大小:面部较小的图像更容易出现人工痕迹,因为细节更难识别。
  • 图像分辨率:低分辨率图像更难识别,因为信息量更少。

1.4 指南结构和目标

  • 五个类别:指南将人工痕迹和不合理之处分为五个类别:人体不合理之处、风格痕迹、功能不合理之处、违反物理原理和社会文化不合理之处。
  • 目标:帮助读者发展更敏锐的视觉洞察力,并培养判断图像是否为 AI 生成的直觉。

2 人体不合理之处

人体不合理之处是 AI 生成的图像中常见的特征之一,它们通常出现在手部、眼睛、牙齿、身体、身体合并和生物识别特征等方面。

2.1 手部

手指缺失/多余:AI 生成的图像中,人物的手指可能缺失、多余或合并,导致手部看起来不自然。

指甲缺失:人物的手指甲可能缺失,使其看起来不完整。

手部比例不合理:手部可能过大或过小,与身体比例不协调。

2.2 眼睛

瞳孔对齐不当:瞳孔可能对齐不当,导致眼睛看起来不自然。

瞳孔形状不圆:瞳孔可能呈现不规则形状,而不是圆形。

眼睛过于光亮:眼睛可能过于光亮,缺乏自然的光泽和细节。

空洞的眼神:人物的眼神可能空洞无神,缺乏情感表达。

2.3 牙齿

牙齿排列不齐:牙齿可能排列不齐,甚至重叠,导致口腔看起来不自然。

牙齿数量异常:人物可能拥有过多或过少的牙齿,与正常情况不符。

2.4 身体

多余/缺失肢体:人物可能拥有多余或缺失的肢体,导致身体结构不合理。

身体弯曲方式不合理:身体部分可能以不自然的方式弯曲,例如膝盖反方向弯曲。

身体比例不合理:身体比例可能不协调,例如头过大或过小。

2.5 身体合并

身体部位合并:AI 模型可能无法区分不同人物的身体部位,导致身体部位合并,例如手指或脚趾合并。

2.6 生物识别特征

面部特征差异:与真实照片相比,AI 生成的图像中人物的面部特征(例如耳朵、鼻子、嘴巴的大小、形状和比例)可能存在差异。

2.7 识别人体不合理之处的要点

  • 手部是否有任何人工痕迹?
  • 人物的四肢比例是否不自然?
  • 不同人之间是否有身体部位合并?
  • 任何人的目光看起来不自然吗?
  • 眼睛或嘴巴/牙齿有什么不自然的地方吗?
  • 图像是否似乎描绘了一个你有其他图像的人?如果是,与其他图像相比,生物特征的大小、形状和比例是否有明显差异?

3 风格上的人工痕迹

       风格上的人工痕迹是指AI生成图像中,与真实照片相比,在风格上出现的明显或不明显的人工痕迹。这些痕迹可能源于AI对图像细节的过度优化或缺乏对真实世界逻辑的理解,从而导致图像看起来过于“完美”或不符合现实世界的规律。

3.1 常见风格痕迹

  • 塑料质感:人物的皮肤可能看起来蜡质、反光、卡通化或过于光滑,缺乏真实皮肤的自然纹理和光影变化。
  • 电影化风格:图像可能呈现出戏剧化、戏剧性的氛围,类似于电影或杂志照片,缺乏真实场景的自然感。
  • 超现实细节:某些部分的细节可能过于精细,例如头发看起来过于柔软、细腻且被风吹拂,与场景中的其他元素不协调。
  • 分辨率和颜色不一致:图像中不同部分的分辨率或颜色可能不一致,例如人物和背景之间,或不同物体之间,看起来像是从不同场景拼接而成。
  • 缺失背景或背景不自然:图像可能缺少背景,或背景看起来不真实,例如绿幕背景或被照片编辑工具篡改的痕迹。
  • 光线和阴影问题:阴影可能投射方向不一致,或形状与光源不符。
  • 反射问题:镜面、水面或其他光滑表面上的反射可能与场景中的其他元素不匹配。
  • 深度和透视问题:图像可能出现扭曲,或深度和透视关系不符合现实世界的规律。

3.2 识别风格上的人工痕迹的要点

  • 图像中的人物看起来是否蜡质、光滑、闪亮或塑料感?
  • 场景是否看起来不自然地戏剧化和电影化?
  • 是否有缺失的背景或不自然的背景?
  • 图像的不同部分是否看起来像是从不同的场景中剪切出来的?
  • 脸部是否看起来与图像的其余部分处于不同的照明下?
  • 图像中不同组件的边缘是否有类似涂抹的故障?

答案如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/711581.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

056、PyCharm 快速代码重构的方法

在实际的编程过程中,如果有一段代码需要在多个地方重复使用,我们应该将这段代码封装成一个函数。这样可以提高代码的可重用性和可维护性。 在PyCharm编辑器里,可以使用以下操作对代码块进行快速的重构。 (1)、选中一…

【数据分析】推断统计学及Python实现

各位大佬好 ,这里是阿川的博客,祝您变得更强 个人主页:在线OJ的阿川 大佬的支持和鼓励,将是我成长路上最大的动力 阿川水平有限,如有错误,欢迎大佬指正 Python 初阶 Python–语言基础与由来介绍 Python–…

CCAA质量管理【学习笔记】​​ 备考知识点笔记(五)质量设计方法与工具

第五节 质量设计方法与工具 1 任 务 分 解 法 1.1 概念 任务分解法,又称工作分解结构 (Work Breakdown Structure, 简 称 WBS) 。WBS 指以可交付成果为 导向,对项目团队为实现项目目标并完成规定的可交付成果而执行的工作所进行的层次分解。W…

mysql 8 创建用户,并对用户授权

创建用户: 对MySQL创建新用户。命令如下: create user devuser% identified by 123456; 授予权限 grant all privileges on joolun_ry.* to devuser% with grant option; 参数说明: joolun_ry:表明对那个库进行授权&#xf…

C语言概述与历史

引言 C语言是一门历史悠久且影响深远的编程语言。它不仅为后继的许多编程语言奠定了基础,同时因其高效性和灵活性在系统编程和嵌入式开发领域得到了广泛应用。本篇文章将全面介绍C语言的起源与发展、设计目标与理念,以及C语言的标准演化历程,…

解决MyBatis获取刚插入数据的ID值

解决MyBatis获取刚插入数据的ID值 Mybatis获取刚插入数据的ID值有很多解决方法,目前采用以下方式进行获取。 添加完数据后直接返回刚添加数据的id // UserDao.java public static void addUser() throws Exception{InputStream resourceAsStream Resources.getR…

学习资料分析

学习资料分析 速算运算 √截位直除分数比较等比修正其他速算方法基期与现期基本概念求基期求现期增长率与增长量增长相关统计术语求一般增长率比较一般增长率增长量比重比重相关公式求比重平均数倍数间隔增长乘积增长率年增长率混合增长率资料分析:主要测查报考者对文字、数字…

N3 中文文本分类

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊# 前言 前言 前面学习了相关自然语言编码,这周进行相关实战 导入依赖库和设置设备 import torch import torch.nn as nn import torchvision fro…

湘潭大学信息与网络安全复习笔记2(总览)

前面的实验和作业反正已经结束了,现在就是集中火力把剩下的内容复习一遍,这一篇博客的内容主要是参考教学大纲和教学日历 文章目录 教学日历教学大纲 教学日历 总共 12 次课,第一次课是概述,第二次和第三次课是密码学基础&#x…

Android入门第68天-自动更新/升级怎么做(生产级实例)

开篇 今天我们进入第68讲。 在第60天左右其实很多同学们已经进入了APP应用开发了,因为60天内容足以让大家踏上正实的Android开发生涯。 随着开发的深入,我们发觉日常工作中无非就是一些组件的嵌套、合理应用。当代码迭代、功能迭代越来越频繁后我们面临着另一个问题,即:…

Vue3 生命周期函数及其与Vue2的对比总结

Vue3 继续保留了 Vue2 的生命周期钩子,但在 Composition API(setup 函数)中,它们被改为了一组导入函数。以下是它们的对比: Vue2 生命周期钩子和 Vue3 对应的生命周期函数: 在 Vue3 中,所有的…

git 快速将当前目录添加仓储

一、进入目录 git init git add . git commit -m "init" git remote add origin http://192.168.31.104/root/AutoBuildDemo.git 二、登录gitlab,创建项目AutoBuildDemo 最后执行: git push -u origin master

笔记 | 软件工程06-1:软件设计-软件设计基础

1 软件设计概述 1.1 为什么要软件设计 1.2 何为软件设计 何为软件系统的解决方案? 软件设计关注与软件需求的实现问题软件设计是需求分析和软件实现间的桥梁 1.3 软件设计的质量要求 1.4 软件设计的过程 1.4.1 软件体系结构设计 1.4.2 用户界面设计 1.4.3 软件详细…

C++ 18 之 函数的重载

c18函数的重载.cpp #include <iostream> #include <string.h> using namespace std;void fun4(int a) {cout << "int a: "<< a << endl; } void fun4(double a) {cout << "double a: " << a << endl; }v…

yolov10主要特点

在我们探讨YOLOv10之前&#xff0c;让我们回顾一下YOLO的发展历程。YOLO在实时目标检测领域一直是先驱&#xff0c;兼顾速度和准确性。从YOLOv1到YOLOv9&#xff0c;每个版本在架构、优化和数据增强方面都引入了显著的改进。然而&#xff0c;随着模型的发展&#xff0c;某些限制…

拦截器 之 用户登录判断

spring boot 拦截器的实现需要有两步&#xff1a; 自定义一个拦截器 package com.example.demo.common;import jakarta.servlet.http.HttpServletRequest; import jakarta.servlet.http.HttpServletResponse; import jakarta.servlet.http.HttpSession; import org.springfra…

Zadig vs. Jenkins 详细比较

01、Zadig vs. Jenkins&#xff1a;关于时代的选择 最近官方公众号发布了一篇名为 《是时候和 Jenkins 说再见了》的文章&#xff0c;引起了社区的广泛关注和讨论。作为曾经最被广泛使用的持续构建交付工具&#xff0c;Jenkins 的江湖地位似乎被挑战了。评论中有一条被高度点赞…

【字符串函数】

1.strlen的使⽤和模拟实现 size_t strlen ( const char * str ); 1.字符串以 \0 作为结束标志&#xff0c;strlen函数返回的是在字符串中 \0 前⾯出现的字符个数&#xff08;不包 含 \0 )。 2.参数指向的字符串必须要以 \0 结束。 3.注意函数的返回值为size_t&#xff0c;是⽆…

Denoising Prior Driven Deep Neural Network for Image Restoration

之所以能够检索到这篇论文是想看看该论文是如何利用多尺度相似性解决图像去噪问题&#xff0c;除了摘要和结论&#xff0c;论文中两次提到这个术语。next section是指section 4。然后整个section 4&#xff0c;根本没有提多尺度的事儿&#xff0c;更别说解决了。又看了一下The …

excel中按多列进行匹配并对数量进行累加

公司的生产计划是按订单下发&#xff0c;但不同订单的不同产品中可能有用到相同的配件&#xff0c;按单1对1时&#xff0c;对计算机十分友好&#xff0c;但对于在配件库检料的工人来说就比较麻烦&#xff0c;上百条产品里可能会有多条都是相同的产品&#xff0c;首先考虑的办法…