Sm4【国密4加密解密】

当我们开发金融、国企、政府信息系统时,不仅要符合网络安全的等保二级、等保三级,还要求符合国密的安全要求,等保测评已经实行很久了,而国密测评近两年才刚开始。那什么是密码/国密?什么是密评?本文就关于密码/国密及应用进行基础的知识梳理、记录。 

01、密码(国密)算法有哪些?

国产化替代大家应该都熟悉了,为了应对日益复杂多变的国际形势(丑国),保障我们的IT技术自助可控,从硬件到软件,都在进行着国产化替代。密码领域也不例外,国密就是用来代替国际密码的。先来了解下密码的分类,及对应的国密算法。

image

我国国家密码管理局在2012年公布了无线局域网产品使用的SM4密码算法——商用密码算法。
它是分组算法当中的一种,算法特点是设计简沽,结构有特点,安全高效。
数据分组长度为128比特,密钥长度为128 比特。加密算法与密钥扩展算法都采用32轮迭代结构。
SM4密码算法以字节(8位)和字(32位)作为单位进行数据处理。

SM4密码算法是对合运算,因此解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

02、SM4基本算法 

SM4密码算法使用的基本运算为异或和循环移位。

异或:⊕,32位异或运算

循环移位:<<<i,把32位字循环左移i位

字:(32位)

03、依赖

    <!--sm4加密算法依赖-->
        <dependency>
            <groupId>org.bouncycastle</groupId>
            <artifactId>bcprov-jdk15on</artifactId>
            <version>1.59</version>
        </dependency>

04、工具类


import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SecureRandom;
import java.security.Security;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.spec.SecretKeySpec;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.pqc.math.linearalgebra.ByteUtils;

/**
 * sm4加密算法工具类
 * @explain sm4加密、解密与加密结果验证 可逆算法
 * @Autor:jingyao
 */
public class Sm4Util {
    static {
        Security.addProvider(new BouncyCastleProvider());
    }
    private static final String ENCODING = "UTF-8";
    public static final String ALGORITHM_NAME = "SM4";
    // 加密算法/分组加密模式/分组填充方式
    // PKCS5Padding-以8个字节为一组进行分组加密
    // 定义分组加密模式使用:PKCS5Padding
    public static final String ALGORITHM_NAME_ECB_PADDING = "SM4/ECB/PKCS5Padding";
    // 128-32位16进制;256-64位16进制
    public static final int DEFAULT_KEY_SIZE = 128;

    /**
     * 生成ECB暗号
     * @explain ECB模式(电子密码本模式:Electronic codebook)
     * @param algorithmName 算法名称
     * @param mode 模式
     * @param key
     * @return
     * @throws Exception
     */
    private static Cipher generateEcbCipher(String algorithmName, int mode, byte[] key) throws Exception {
        Cipher cipher = Cipher.getInstance(algorithmName, BouncyCastleProvider.PROVIDER_NAME);
        Key sm4Key = new SecretKeySpec(key, ALGORITHM_NAME);
        cipher.init(mode, sm4Key);
        return cipher;
    }

    /**
     * 自动生成密钥
     * @explain
     * @return
     * @throws NoSuchAlgorithmException
     * @throws NoSuchProviderException
     */
    public static byte[] generateKey() throws Exception {
        return generateKey(DEFAULT_KEY_SIZE);
    }


    //加密******************************************
    /**
     * @explain 系统产生秘钥
     * @param keySize
     * @return
     * @throws Exception
     */
    public static byte[] generateKey(int keySize) throws Exception {
        KeyGenerator kg = KeyGenerator.getInstance(ALGORITHM_NAME, BouncyCastleProvider.PROVIDER_NAME);
        kg.init(keySize, new SecureRandom());
        return kg.generateKey().getEncoded();
    }

    /**
     * sm4加密
     * @explain 加密模式:ECB 密文长度不固定,会随着被加密字符串长度的变化而变化
     * @param hexKey 16进制密钥(忽略大小写)
     * @param paramStr 待加密字符串
     * @return 返回16进制的加密字符串
     * @throws Exception
     */
    public static String encryptEcb(String hexKey, String paramStr) throws Exception {
        String cipherText = "";
        // 16进制字符串-->byte[]
        byte[] keyData = ByteUtils.fromHexString(hexKey);
        // String-->byte[]
        byte[] srcData = paramStr.getBytes(ENCODING);
        // 加密后的数组
        byte[] cipherArray = encrypt_Ecb_Padding(keyData, srcData);
        // byte[]-->hexString
        cipherText = ByteUtils.toHexString(cipherArray);
        return cipherText;
    }

    /**
     * 加密模式之Ecb
     * @param key
     * @param data
     * @return
     * @throws Exception
     */
    public static byte[] encrypt_Ecb_Padding(byte[] key, byte[] data) throws Exception {
        Cipher cipher = generateEcbCipher(ALGORITHM_NAME_ECB_PADDING, Cipher.ENCRYPT_MODE, key);//声称Ecb暗号,通过第二个参数判断加密还是解密
        return cipher.doFinal(data);
    }

    //解密****************************************
    /**
     * sm4解密
     * @explain 解密模式:采用ECB
     * @param hexKey 16进制密钥
     * @param cipherText 16进制的加密字符串(忽略大小写)
     * @return 解密后的字符串
     * @throws Exception
     */
    public static String decryptEcb(String hexKey, String cipherText) throws Exception {
        // 用于接收解密后的字符串
        String decryptStr = "";
        // hexString-->byte[]
        byte[] keyData = ByteUtils.fromHexString(hexKey);
        // hexString-->byte[]
        byte[] cipherData = ByteUtils.fromHexString(cipherText);
        // 解密
        byte[] srcData = decrypt_Ecb_Padding(keyData, cipherData);
        // byte[]-->String
        decryptStr = new String(srcData, ENCODING);
        return decryptStr;
    }

    /**
     * 解密
     * @explain
     * @param key
     * @param cipherText
     * @return
     * @throws Exception
     */
    public static byte[] decrypt_Ecb_Padding(byte[] key, byte[] cipherText) throws Exception {
        Cipher cipher = generateEcbCipher(ALGORITHM_NAME_ECB_PADDING, Cipher.DECRYPT_MODE, key);//生成Ecb暗号,通过第二个参数判断加密还是解密
        return cipher.doFinal(cipherText);
    }

    /**
     * 校验加密前后的字符串是否为同一数据
     * @explain
     * @param hexKey 16进制密钥(忽略大小写)
     * @param cipherText 16进制加密后的字符串
     * @param paramStr 加密前的字符串
     * @return 是否为同一数据
     * @throws Exception
     */
    public static boolean verifyEcb(String hexKey, String cipherText, String paramStr) throws Exception {
        // 用于接收校验结果
        boolean flag = false;
        // hexString-->byte[]
        byte[] keyData = ByteUtils.fromHexString(hexKey);
        // 将16进制字符串转换成数组
        byte[] cipherData = ByteUtils.fromHexString(cipherText);
        // 解密
        byte[] decryptData = decrypt_Ecb_Padding(keyData, cipherData);
        // 将原字符串转换成byte[]
        byte[] srcData = paramStr.getBytes(ENCODING);
        // 判断2个数组是否一致
        flag = Arrays.equals(decryptData, srcData);
        return flag;
    }

}

05、测试Demo

import com.example.mybatiseplusdemo.util.Sm4Util;

public class Sm4Test {
    public static void main(String[] args) {
        try {
            System.out.println("开始测试SM4加密解密====================");
            String json = "{\"name\":\"大司命\",\"描述\":\"测试SM4加密解密\"}";
            System.out.println("加密前:"+json);
            //自定义的32位16进制秘钥
            String key = "86C63180C2806ED1F47B859DE501215B";
            String cipher = Sm4Util.encryptEcb(key,json);//sm4加密
            System.out.println("加密后:"+cipher);
            System.out.println("校验:"+Sm4Util.verifyEcb(key,cipher,json));//校验加密前后是否为同一数据
            json = Sm4Util.decryptEcb(key,cipher);//解密
            System.out.println("解密后:"+json);
            System.out.println("结束===================");
        } catch (Exception e) {
            e.printStackTrace();
        }

    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/706761.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android低代码开发 - InputMenuPanelItem详解

我们知道MenuPanel是一个菜单面板容器&#xff0c;它里面可以放各式各样的菜单和菜单组。今天我们就来详细讲解输入菜单这个东西。 InputMenuPanelItem源码 package dora.widget.panel.menuimport android.content.Context import android.text.Editable import android.text…

Vue2/Vue3使用video播放视频--捕获截图

基本步骤 在JavaScript中&#xff0c;实现从<video>元素中截图的基本步骤如下&#xff1a; 1、创建Canvas元素&#xff1a;首先&#xff0c;需要创建一个<canvas>元素&#xff0c;因为截图操作会借助Canvas的绘图上下文来完成。 2、获取Video帧&#xff1a;从<v…

Elasticsearch-经纬度查询(8.x)

目录 一、开发环境 二、pom文件 三、ES配置文件 四、ES相关字段 五、ES半径查询 ES的字段类型:geo_point&#xff0c;可以实现以一个点为中心的半径查询(geo_distance query) ES地理位置查询: 半径查询(geo_distance query)查询指定矩形内的数据(geo_bounding_box query…

现代易货模式:重塑物品价值,引领交换新潮流

在日益繁荣的现代社会&#xff0c;物品交换文化正逐渐兴起&#xff0c;一种新型的交易模式——现代易货模式&#xff0c;正在成为市场的新宠。它不仅是对传统“以物易物”模式的现代化演绎&#xff0c;更是对物品价值再认识和交换方式创新的体现。 现代易货模式&#xff0c;简言…

【表单视图】-卡片视图支持统计设置

06/05 主要更新模块概览 统计设置 快捷回复 背景设置 帮助中心 01 表单管理 1.1 【表单视图】-卡片视图新增统计设置 说明&#xff1a; 在卡片视图中成功新增了统计功能和统计效果。现在&#xff0c;用户无需额外操作&#xff0c;即可在卡片视图状态下直接清晰地看到需求…

STM32开发过程中碰到的问题总结 - 1

文章目录 前言1. 怎么生成keil下可以使用的文件和gcc下编译使用的makefile2. STM32的时钟树3.怎么查看keil5下的编译工具链用的是哪个4. Arm编译工具链和GCC编译工具链有什么区别吗&#xff1f;5. 怎么查看Linux虚拟机是x86的还是aarch646. 怎么下载gcc-arm的编译工具链7.怎么修…

推挽与开漏输出

一般来说&#xff0c;微控制器的引脚都会有一个驱动电路&#xff0c;可以配置不同类型的数字和模拟电路接口。输出模式一般会有推挽与开漏输出。 推挽输出 推挽输出&#xff08;Push-Pull Output&#xff09;&#xff0c;故名思意能输出两种电平&#xff0c;一种是推&#xf…

天降流量于雀巢?元老品牌如何创新营销策略焕新生

大家最近有看到“南京阿姨手冲咖啡”的视频吗&#xff1f;三条雀巢速溶咖啡入杯&#xff0c;当面加水手冲&#xff0c;十元一份售出&#xff0c;如此朴实的售卖方式迅速在网络上走红。而面对这一波天降的热度&#xff0c;雀巢咖啡迅速做出了回应&#xff0c;品牌组特地去到了阿…

君子签帮助物流组织打造线上签约平台,助力简化成本,高效运转

各类物流组织日常业务可能涉及“企业入驻、快递、整车运输、货运、仓储、供应链等”多种类型&#xff0c;各个环节都存在大量的文件/单据签署&#xff0c;网点、客户、司机、收货人遍布全国各地&#xff0c;复杂的签署需求&#xff0c;以及庞大的签字、用印需求&#xff0c;让各…

2.6数据报与虚电路

数据报 当作为通信子网用户的端系统要发送一个报文时&#xff0c;在端系统中实现的高层协议先把报文拆成若干个带有序号的数据单元&#xff0c;并在网络层加上地址等控制信息后形成数据报分组(即网络层PDU)中间结点存储分组一段很短的时间&#xff0c;找到最佳的路由后&#x…

讯飞有一个可以根据描述文本自动生成PPT的AI接口,有趣

文档&#xff1a;https://www.xfyun.cn/doc/spark/PPTGeneration.html 价格方面提供了免费1000点的额度&#xff0c;生成一次是10点&#xff0c;正好100次&#xff0c;如果要购买的话最低要购买1344元的&#xff0c;没有按量付费的模式&#xff0c;个人小开发者可买不起。 让我…

无线网络与物联网技术[1]之近距离无线通信技术

无线网络与物联网技术 近距离无线通信技术WIFIWi-Fi的协议标准Wi-Fi的信道Wi-Fi技术的术语Wi-Fi的组网技术Ad-hoc模式无线接入点-APAP&#xff1a;FAT AP vs FIT AP Wi-Fi的特点与应用Wi-Fi的安全技术 Bluetooth蓝牙技术概论蓝牙的技术协议蓝牙的组网技术微微网piconet(了解)散…

安装操作系统1-Win10版本介绍及硬件要求

注意&#xff1a;安装系统&#xff0c;首先弄清有哪些版本及所需硬件环境。 1.Win10有哪些版本 微软将 Win10为以下7个版本&#xff1a; Windows 10 家庭版&#xff08;Home&#xff09; 面向所有普通用户&#xff0c;提供Win 10的基本功能。此版本适合个人家庭用户使用&am…

ATFX汇市:美国5月通胀率回落,降息预期刺激黄金走高

ATFX汇市&#xff1a;据美国劳工部发布的最新数据&#xff0c;美国5月核心CPI年率最新值3.4%&#xff0c;低于前值3.6%&#xff1b;名义CPI年率最新值3.3%&#xff0c;低于前值3.4%。核心CPI年率和名义CPI年率双双下降&#xff0c;超出此前市场预期&#xff08;预期为整体保持不…

App自动化之dom结构和元素定位方式(包含滑动列表定位)

DOM结构 先来看几个名词和解释&#xff1a; dom: Document Object Model 文档对象模型 dom应用: 最早应用于html和js的交互。界面的结构化描述&#xff0c; 常见的格式为html、xml。核心元素为节点和属性 xpath: xml路径语言&#xff0c;用于xml 中的节点定位&#xff0c;X…

postman教程-20-Newman安装入门

上一小节我们学习了Postman mock测试的方法&#xff0c;本小节我们讲解一下Postman Newman的安装方法。 Newman是Postman团队开发的一个命令行工具&#xff0c;它允许用户通过命令行接口&#xff08;CLI&#xff09;运行Postman集合&#xff08;Collections&#xff09;和环境…

STM32程序启动过程

&#xff08;1&#xff09;首先对栈和堆的大小进行定义&#xff0c;并在代码区的起始处建立中断向量表&#xff0c;其第一个表项是栈顶地址&#xff08;32位&#xff09;&#xff0c;第二个表项是复位中断服务入口地址&#xff1b; &#xff08;2&#xff09;然后执行复位中断&…

关于FPGA对 DDR4 (MT40A256M16)的读写控制 I

关于FPGA对 DDR4 &#xff08;MT40A256M16&#xff09;的读写控制 I 语言 &#xff1a;Verilg HDL EDA工具&#xff1a;ISE、Vivado 关于FPGA对 DDR4 &#xff08;MT40A256M16&#xff09;的读写控制 I一、引言二、DDR4的特性&#xff08;MT40A256M16&#xff09;&#xff08;1…

QML学习十九:ttf字体库使用

一、前言 在使用QML时&#xff0c;常常自定义按钮&#xff0c;按钮上有显示个图标&#xff0c;其实&#xff0c;那不是图标&#xff0c;是文本&#xff0c;如何显示&#xff1f; 本篇记录&#xff0c;如何导入阿里巴巴字体库&#xff0c;并调用显示。 二、阿里巴巴字体库下载…

少样本学习元学习

基本概念 首先是机器学习&#xff1a; 然后&#xff0c;什么是元学习&#xff08;what is meta learning?) 之前&#xff0c;Component都是让人自己设置的。在Meta Learning中&#xff0c;我们期望它能够自己学出来。 不同的meta learning方法就是想办法去学learning algori…