高创新 | CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测

目录

    • 效果一览
    • 基本介绍
    • 模型设计
    • 程序设计
    • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

高创新 | CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测
本文提出一种基于CEEMDAN 的二次分解方法,通过样本熵重构CEEMDAN 分解后的序列,复杂序列通过VMD 分解后,将各个分量分别通过BiLSTM-Attention模型预测,最终将预测结果整合。

模型设计

1.Matlab实现CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测(完整源码和数据)

2.CEEMDAN分解,计算样本熵,根据样本熵进行kmeans聚类,调用VMD对高频分量二次分解, VMD分解的高频分量与前分量作为卷积双向长短期记忆神经网络注意力机制模型的目标输出分别预测后相加。

3.多变量单输出,考虑历史特征的影响!评价指标包括R2、MAE、RMSE、MAPE等。

4.算法新颖。CEEMDAN-VMD-BiLSTM-Attention模型处理数据,具有更高的准确率,能够跟踪数据的趋势以及变化。VMD 模型处理非线性、非平稳以及复杂的数据,表现得比EMD 系列更好,因此将重构的数据通过VMD 模型分解,提高了模型的准确度。

5.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行主文件一键出图。

6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

  • 参考文献1

在这里插入图片描述
在这里插入图片描述

  • 参考文献2
    在这里插入图片描述
  • 参考文献3
  • 在这里插入图片描述
    在这里插入图片描述
    数据集
    在这里插入图片描述

程序设计

  • 完整程序私信博主回复CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

 
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 100, ...                  % 最大训练次数 
    'InitialLearnRate', 0.01, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Verbose', 1);
figure
subplot(2,1,1)
plot(T_train,'k--','LineWidth',1.5);
hold on
plot(T_sim_a','r-','LineWidth',1.5)
legend('真实值','预测值')
title('CEEMDAN-VMD-CNN-BiLSTM-Attention训练集预测效果对比')
xlabel('样本点')
ylabel('数值')
subplot(2,1,2)
bar(T_sim_a'-T_train)
title('CEEMDAN-VMD-BiLSTM-Attention训练误差图')
xlabel('样本点')
ylabel('数值')

disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test,T_sim_b');
fprintf('\n')


figure
subplot(2,1,1)
plot(T_test,'k--','LineWidth',1.5);
hold on
plot(T_sim_b','b-','LineWidth',1.5)
legend('真实值','预测值')
title('CEEMDAN-VMD-BiLSTM-Attention测试集预测效果对比')
xlabel('样本点')
ylabel('数值')
subplot(2,1,2)
bar(T_sim_b'-T_test)
title('CEEMDAN-VMD-BiLSTM-Attention测试误差图')
xlabel('样本点')
ylabel('数值')


参考资料

[1] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502
[2] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502
[3] https://hmlhml.blog.csdn.net/article/details/132372151

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/706257.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PHP聚合通多平台支付平台源码

源码介绍 php聚合通多平台支付平台源码,源码搭建了一下,这个源码不复杂,修改一下数据库账号密码然后导入数据库就可以,和网站恢复备份一样简单! 源码截图 源码下载 PHP聚合通多平台支付平台源码

Landsat8的质量评估波段的一个应用

Landsat8一直是遥感界的热门话题。这不仅延续了自1972年以来NASA连续对地观测,而且这颗卫星为科学界带来了一些新的东西——质量评估波段(the Quality Assessment (QA) Band)。根据USGS Landsat Missions webpage,“QA通过标示哪个…

shell循环以及实验

循环是一种重复执行的代码结构,只要满足循环的条件,会一直执行这个代码 循环条件:在一定范围之内,按照指定次数来执行循环。 循环体:在指定的次数内,执行的命令序列,只要条件满足,…

unidbg讲解V1

前言 unidbg是什么? unidbg是一个Java项目,可以帮助我们去模拟一个安卓或IOS设备,用于去执行so文件中的算法,从而不需要再去逆向他内部的算法。最终会产出一个jar包,可以被python进行调用。 如何使用unidbg? 下载github上开源的项目:https://github.com/zhkl0228/un…

【SkiaSharp绘图02】从绘制和填充圆开始

文章目录 准备工作从绘制和填充圆开始与Window GDI的差异 准备工作 【SkiaSharp绘图】系列文章的代码都是基于在窗体中拖入一个SkiaSharp.Views.Desktop.SKGLControl控件并平铺于窗体上(有需要的可以查看【SkiaSharp绘图01】使用SkiaSharp绘制Hello World一文&…

平板消解加热台-温度均匀,防腐蚀-实验室化学分析

DBF系列防腐电热板 是精致路合金加热板块表面经进口高纯实验级PFATeflon氟塑料防腐不粘处理,专为实验室设计的电加热产品,是样品前处理中,加热、消解、煮沸、蒸酸、赶酸等处理的得力助手。可以满足物理、化学、生物、环保、制药、食品、饮品…

将Firefox插件导入Edge/Chrome中

目录 前言导出火狐插件.xpi格式插件导入edge/chorme中错误示范1错误示范2修改过程manifest.jsondict文件夹修改backgroundScript.jsinjectedScript.jsdebug过程最终backgroundScript.js和injectedScript.js代码 完工阶段修改后的源码 前言 因为博主本人想在edge/chrome中使用c…

深度解析ONLYOFFICE协作空间2.5版本新功能

深度解析ONLYOFFICE协作空间2.5版本新功能 上个月,4月份,ONLYOFFICE协作空间推出了V2.5版本,丰富了一些很实用的新功能,之前已经有文章介绍过了: ONLYOFFICE 协作空间 2.5 现已发布https://blog.csdn.net/m0_6827469…

vscode切换Python解释器

在vscode上切换解析器解决方案: 1、确认自己已经安装了python环境 2、command shift p ,在这里切换即可,见下图: 3、如果状态栏也就是右下角不现实切换操作的话,打开设置:

Redis跳表

Redis跳表 跳表是一种有序数据结构,它通过在每个节点维持多个指向其他节点的指针,从而达到快速访问节点的目的 跳表支持平均O(logN),最坏O(N)复杂度的节点查找,还可以通过顺序性操作…

SCI二区|鲸鱼优化算法(WOA)原理及实现【附完整Matlab代码】

目录 1.背景2.算法原理2.1算法思想 3.结果展示4.参考文献5.代码获取 1.背景 2016年,S Mirjalili受到自然界座头鲸社会行为启发,提出了鲸鱼优化算法(Whale Optimization Algorithm, WOA)。 2.算法原理 WOA模拟了座头鲸的社会行为…

[linux]如何跟踪linux 内核运行的流程呢

前面已经可以把内核编译出来,但是作为技术狗想看到内核是怎么运行的怎么办? 内核很多代码都是C语言写的,那简单,添加2行代码: include/linux/printk.h 529和530原来的: #define pr_info(fmt, ...) \ …

App UI 风格打造独特体验

App UI 风格打造独特体验

Python第二语言(十三、PySpark实战)

目录 1.开篇 2. PySpark介绍 3. PySpark基础准备 3.1 PySpark安装 3.2 掌握PySpark执行环境入口对象的构建 3.3 理解PySpark的编程模型 4. PySpark:RDD对象数据输入 4.1 RDD对象概念:PySpark支持多种数据的输入,完成后会返回RDD类的对…

HCIA4以太网基础VLAN与接口类型

1.VLAN基本概念 如下图,一台未配置的交换机,所有接口属于同一个广播域。那么这四台PC只要属于同一个IP子网,那么PC间可互相访问。同广播域中任一PC只要发送一个广播数据帧,那么其他三个PC都会收到,并且耗费资源来处理…

基于Django和Vue的商城管理系统

文章目录 前言一、系统运行结果二、相关技术简介三、系统设计四、系统测试五、总结 前言 近年来,互联网技术的飞速发展极大地改变了人们的生活方式。网络购物作为一种新的购物模式,因其方便、快捷、选择多样等优点,迅速普及。为了满足人们日…

FPGA+金融|硬件行情加速系统 打造极速交易场景

会议时间:2024年06月20日(周四)下午13:50 FPGA金融|硬件行情加速系统 打造极速交易场景_中科亿海微_芯有灵犀 智创未来

TF-IDF算法教程

前言 TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用的文本分析技术,广泛应用于信息检索和文本挖掘领域。它是一种统计方法,用于评估一个词语在一个文档中的重要程度。TF-IDF的核心思想是:如果一个词语…

vue3之toRefs

import { reactive, toRefs } from vue;export default {setup() {// 创建一个响应式对象const state reactive({count: 0,name: Vue 3});// 使用toRefs将响应式对象的属性转换为响应式引用const refs toRefs(state);// 返回响应式引用,以便在模板中使用return {.…

【iOS】KVC相关总结

目录 1. 什么是KVC?2. 访问对象属性常用方法声明基础使用KeyPath路径多值操作 3. 访问集合属性4. 集合运算符自定义集合运算符 5. 非对象值处理访问基本数据类型访问结构体 6. 属性验证7. 设值和取值原理基本的Getter搜索模式基本的Setter搜索模式NSMutableArray搜索…