opencv实战项目 手势识别-手势控制键盘

手势识别是一种人机交互技术,通过识别人的手势动作,从而实现对计算机、智能手机、智能电视等设备的操作和控制。

1.  opencv实现手部追踪(定位手部关键点)

2.opencv实战项目 实现手势跟踪并返回位置信息(封装调用)

3.opencv实战项目 手势识别-手势控制鼠标

4.opencv实战项目 手势识别-手势控制键盘

未完待续

本专栏记录作者的学习之旅会一直更新下去,欢迎订阅一起学习进步

本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等在这里插入图片描述

 代码需要用到opencv   HandTraqckModule模块   mediapipe模块和一个键盘控制模块pynput,cvzone模块

一、HandTraqckModule模块 

前面的文章中有封装手部检测模块的教程,这边简单的介绍一下,有新增加的模块可以简单学习一下

import cv2
import mediapipe as mp
import math


class HandDetector:
    """
    Finds Hands using the mediapipe library. Exports the landmarks
    in pixel format. Adds extra functionalities like finding how
    many fingers are up or the distance between two fingers. Also
    provides bounding box info of the hand found.
    """

    def __init__(self, mode=False, maxHands=2, detectionCon=0.5, minTrackCon=0.5):
        """
        :param mode: In static mode, detection is done on each image: slower
        :param maxHands: Maximum number of hands to detect
        :param detectionCon: Minimum Detection Confidence Threshold
        :param minTrackCon: Minimum Tracking Confidence Threshold
        """
        self.mode = mode
        self.maxHands = maxHands
        self.detectionCon = detectionCon
        self.minTrackCon = minTrackCon

        self.mpHands = mp.solutions.hands
        self.hands = self.mpHands.Hands(self.mode, self.maxHands,
                                        self.detectionCon, self.minTrackCon)
        self.mpDraw = mp.solutions.drawing_utils
        self.tipIds = [4, 8, 12, 16, 20]
        self.fingers = []
        self.lmList = []

    def findHands(self, img, draw=True):
        """
        Finds hands in a BGR image.
        :param img: Image to find the hands in.
        :param draw: Flag to draw the output on the image.
        :return: Image with or without drawings
        """
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        self.results = self.hands.process(imgRGB)

        if self.results.multi_hand_landmarks:
            for handLms in self.results.multi_hand_landmarks:
                if draw:
                    self.mpDraw.draw_landmarks(img, handLms,
                                               self.mpHands.HAND_CONNECTIONS)
        return img

    def findPosition(self, img, handNo=0, draw=True):
        """
        Finds landmarks of a single hand and puts them in a list
        in pixel format. Also finds the bounding box around the hand.

        :param img: main image to find hand in
        :param handNo: hand id if more than one hand detected
        :param draw: Flag to draw the output on the image.
        :return: list of landmarks in pixel format; bounding box
        """

        xList = []
        yList = []
        bbox = []
        bboxInfo =[]
        self.lmList = []
        if self.results.multi_hand_landmarks:
            myHand = self.results.multi_hand_landmarks[handNo]
            for id, lm in enumerate(myHand.landmark):
                h, w, c = img.shape
                px, py = int(lm.x * w), int(lm.y * h)
                xList.append(px)
                yList.append(py)
                self.lmList.append([px, py])
                if draw:
                    cv2.circle(img, (px, py), 5, (255, 0, 255), cv2.FILLED)
            xmin, xmax = min(xList), max(xList)
            ymin, ymax = min(yList), max(yList)
            boxW, boxH = xmax - xmin, ymax - ymin
            bbox = xmin, ymin, boxW, boxH
            cx, cy = bbox[0] + (bbox[2] // 2), \
                     bbox[1] + (bbox[3] // 2)
            bboxInfo = {"id": id, "bbox": bbox,"center": (cx, cy)}

            if draw:
                cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20),
                              (bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20),
                              (0, 255, 0), 2)

        return self.lmList, bboxInfo

    def fingersUp(self):
        """
        Finds how many fingers are open and returns in a list.
        Considers left and right hands separately
        :return: List of which fingers are up
        """
        if self.results.multi_hand_landmarks:
            myHandType = self.handType()
            fingers = []
            # Thumb
            if myHandType == "Right":
                if self.lmList[self.tipIds[0]][0] > self.lmList[self.tipIds[0] - 1][0]:
                    fingers.append(1)
                else:
                    fingers.append(0)
            else:
                if self.lmList[self.tipIds[0]][0] < self.lmList[self.tipIds[0] - 1][0]:
                    fingers.append(1)
                else:
                    fingers.append(0)

            # 4 Fingers
            for id in range(1, 5):
                if self.lmList[self.tipIds[id]][1] < self.lmList[self.tipIds[id] - 2][1]:
                    fingers.append(1)
                else:
                    fingers.append(0)
        return fingers

    def findDistance(self, p1, p2, img, draw=True):
        """
        Find the distance between two landmarks based on their
        index numbers.
        :param p1: Point1 - Index of Landmark 1.
        :param p2: Point2 - Index of Landmark 2.
        :param img: Image to draw on.
        :param draw: Flag to draw the output on the image.
        :return: Distance between the points
                 Image with output drawn
                 Line information
        """

        if self.results.multi_hand_landmarks:
            x1, y1 = self.lmList[p1][0], self.lmList[p1][1]
            x2, y2 = self.lmList[p2][0], self.lmList[p2][1]
            cx, cy = (x1 + x2) // 2, (y1 + y2) // 2

            if draw:
                cv2.circle(img, (x1, y1), 15, (255, 0, 255), cv2.FILLED)
                cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED)
                cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3)
                cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED)

            length = math.hypot(x2 - x1, y2 - y1)
            return length, img, [x1, y1, x2, y2, cx, cy]

    def handType(self):
        """
        Checks if the hand is left or right
        :return: "Right" or "Left"
        """
        if self.results.multi_hand_landmarks:
            if self.lmList[17][0] < self.lmList[5][0]:
                return "Right"
            else:
                return "Left"


def main():
    cap = cv2.VideoCapture(0)
    detector = HandDetector(detectionCon=0.8, maxHands=1)
    while True:
        # Get image frame
        success, img = cap.read()
        # Find the hand and its landmarks
        img = detector.findHands(img)
        lmList, bboxInfo = detector.findPosition(img)
        print(detector.handType())

        # Display
        cv2.imshow("Image", img)
        cv2.waitKey(1)


if __name__ == "__main__":
    main()

  1. 导入库:导入了必要的库,包括 OpenCV (cv2) 用于图像处理和显示,Mediapipe (mediapipe) 用于手部检测和跟踪,以及数学库 (math)。

  2. HandDetector 类:这是主要的手势检测器类,提供了多个方法来处理手部检测和分析手势。

    • __init__ 方法:初始化检测器的参数,例如检测模式、最大检测手数、检测和跟踪的置信度阈值等。

    • findHands 方法:在给定的图像中寻找手部,可以选择是否绘制检测结果。

    • findPosition 方法:找到单个手部的关键点位置(landmarks)并将它们存储在像素格式的列表中,同时计算手部的边界框信息。

    • fingersUp 方法:确定手势中有多少个手指打开,将结果以列表形式返回。

    • findDistance 方法:计算两个指定关键点之间的距离,并在图像上绘制结果。

    • handType 方法:确定手的类型是左手还是右手。

具体就不展开讲了

这个函数在有一个专门的包叫做cvzone里有,但是不知道是不是版本的问题,少了一些东西,运行不起来,只能自己手撸检测模块。

下面是主函数的代码

import cv2
from cvzone.HandTrackingModule import HandDetector
from HandTrackingModule import *  # 这行导入可能不需要,可以删除
from time import sleep
import numpy as np
import cvzone
from pynput.keyboard import Controller

# 初始化摄像头
cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)

# 创建手势检测器
detector = handDetector(detectionCon=0.8)

# 定义虚拟键盘的按键布局
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
        ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
        ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]

# 初始化最终文本
finalText = ""

# 创建键盘控制器对象
keyboard = Controller()

# 创建按钮类
class Button():
    def __init__(self, pos, text, size=[85, 85]):
        self.pos = pos
        self.size = size
        self.text = text

# 创建按钮列表
buttonList = []
for i in range(len(keys)):
    for j, key in enumerate(keys[i]):
        buttonList.append(Button([100 * j + 50, 100 * i + 50], key))

while True:
    # 读取图像帧
    success, img = cap.read()
    
    # 找出手部和关键点
    img = detector.findHands(img)
    lmList, bboxInfo = detector.findPosition(img)
    
    # 绘制虚拟按钮
    img = drawAll(img, buttonList)

    if lmList:
        for button in buttonList:
            x, y = button.pos
            w, h = button.size

            # 如果手指在按钮范围内,绘制高亮效果
            if x < lmList[8][0] < x + w and y < lmList[8][1] < y + h:
                cv2.rectangle(img, (x - 5, y - 5), (x + w + 5, y + h + 5), (175, 0, 175), cv2.FILLED)
                cv2.putText(img, button.text, (x + 20, y + 65),
                            cv2.FONT_HERSHEY_PLAIN, 4, (255, 255, 255), 4)
                l, _, _ = detector.findDistance(8, 12, img, draw=False)
                print(l)

                # 当点击按钮时
                if l < 30:
                    keyboard.press(button.text)
                    cv2.rectangle(img, button.pos, (x + w, y + h), (0, 255, 0), cv2.FILLED)
                    cv2.putText(img, button.text, (x + 20, y + 65),
                                cv2.FONT_HERSHEY_PLAIN, 4, (255, 255, 255), 4)
                    finalText += button.text
                    sleep(0.15)

    # 绘制已输入的文本
    cv2.rectangle(img, (50, 350), (700, 450), (175, 0, 175), cv2.FILLED)
    cv2.putText(img, finalText, (60, 430),
                cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 5)

    # 显示图像
    cv2.imshow("Image", img)
    cv2.waitKey(1)
  1. 导入库:导入了需要的库,包括 OpenCV (cv2) 用于图像处理和显示,Mediapipe 中的 HandDetector 用于手部检测,cvzone 用于绘制按钮外观,numpy 用于数组处理,pynput.keyboard 中的 Controller 用于模拟键盘输入,time 用于延时。

  2. 设置摄像头参数:通过 OpenCV 设置摄像头的分辨率为 1280x720。

  3. 创建 HandDetector 实例:使用 HandDetector 类创建一个手势检测器实例,设置检测的置信度阈值为 0.5。

  4. 创建按钮列表:创建了一个包含虚拟键盘按钮信息的列表,按键布局通过嵌套列表 keys 定义。

  5. 创建 Button 类:用于创建虚拟按钮的类,每个按钮包含位置、文本内容和大小。

  6. 主循环:进入一个无限循环,用于处理实时的摄像头捕获图像帧。

    • 读取图像帧:从摄像头捕获图像帧。

    • 手部检测:使用手势检测器找出图像中的手部和关键点。

    • 绘制按钮:调用 drawAll 函数在图像上绘制虚拟按钮。

    • 遍历按钮列表:对每个按钮进行检查,看是否有手指触摸到按钮。

      • 如果手指在按钮范围内,绘制高亮效果。

      • 计算手指触摸点与按钮中心的距离,如果小于一定阈值,则模拟键盘按下并记录输入。

    • 绘制已输入的文本:在图像上绘制已输入的文本。

    • 显示图像:通过 OpenCV 显示处理后的图像。

    • 等待键盘输入:等待 1 毫秒,以便保持图像窗口的响应性。

  7. 运行主程序:执行主循环,处理实时的摄像头捕获和手势识别。

如果有遇到问题可以评论区留言,大家一起相互学习!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/70616.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机竞赛 - 基于机器视觉的图像拼接算法

前言 图像拼接在实际的应用场景很广&#xff0c;比如无人机航拍&#xff0c;遥感图像等等&#xff0c;图像拼接是进一步做图像理解基础步骤&#xff0c;拼接效果的好坏直接影响接下来的工作&#xff0c;所以一个好的图像拼接算法非常重要。 再举一个身边的例子吧&#xff0c;…

Java基础入门篇——修饰符

在Java中&#xff0c;修饰符&#xff08;Modifiers&#xff09;是一种用于修改类、方法、变量和其他实体的访问权限、行为或特性的关键字。Java提供了一组修饰符&#xff0c;可以用于实现对代码的封装、继承、多态和访问控制等功能。 1、访问修饰符&#xff08;Access Modifie…

【Spring Boot】夺名连环问(持续更新ing)

Spring的了解与特性 简单介绍&#xff1a;快速开发Spring项目的脚手架。简化Spring应用的初始搭建以及开发过程。 特性 提供了很多内置的Starter结合自动配置&#xff0c;对主流框架的无配置集成、开箱即用。即不需要自己去引入很多依赖。 并且管理了常用的第三方依赖的版本&…

Node.js |(二)Node.js API:fs模块 | 尚硅谷2023版Node.js零基础视频教程

学习视频&#xff1a;尚硅谷2023版Node.js零基础视频教程&#xff0c;nodejs新手到高手 文章目录 &#x1f4da;文件写入&#x1f407;writeFile 异步写入&#x1f407;writeFileSync 同步写入&#x1f407;appendFile / appendFileSync 追加写入&#x1f407;createWriteStrea…

LeetCode150道面试经典题--验证回文串(简单)

1.题目 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后&#xff0c;短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。 字母和数字都属于字母数字字符。 给你一个字符串 s&#xff0c;如果它是 回文串 &#xff0c;返回 true &#xff1b;否…

pve组网实现公网访问pve,访问电脑,访问pve中的openwrt同时经过openwrt穿透主路由地址nginx全公网访问最佳办法测试研究...

一台路由器 做主路由 工控机 装pve虚拟机 虚拟机里面装一个openwrt, 外网可以直接访问pve,可以访问pve里的openwrt 一台主机 可选择连 有4个口&#xff0c;分别eth0,eth1,eth2,eth3 pve有管理口 这个情况下 &#xff0c;没有openwrt 直接电脑和pve管理口连在一起就能进pve管理界…

TCP协议的报头格式和滑动窗口

文章目录 TCP报头格式端口号序号和确认序号确认应答&#xff08;ACK&#xff09;机制超时重传机制 首部长度窗口大小报文类型URGACKSYNPSHFINRST 滑动窗口滑动窗口的大小怎么设定怎么变化滑动窗口变化问题 TCP报头格式 端口号 两个端口号比较好理解&#xff0c;通过端口号来找…

el-tree-select那些事

下拉菜单树形选择器 用于记录工作及日常学习涉及到的一些需求和问题 vue3 el-tree-select那些事 1、获取el-tree-select选中的任意层级的节点对象 1、获取el-tree-select选中的任意层级的节点对象 1-1数据集 1-2画面 1-3代码 1-3-1画面代码 <el-tree-selectv-model"s…

ELK常见部署架构以及出现的问题及解决方案

ELK常见部署架构以及出现的问题及解决方案 ELK 已经成为目前最流行的集中式日志解决方案&#xff0c;它主要是由Beats 、Logstash 、Elasticsearch 、 Kibana 等组件组成&#xff0c;来共同完成实时日志的收集&#xff0c;存储&#xff0c;展示等一站式的解决方案。本文将会介…

Stable Diffusion - 哥特 (Goth) 风格服装与背景的 LoRA 配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132177882 图像来源于 Goth Clothing 的 LoRA 效果&#xff0c;配合哥特 (Goth) 风格服饰的相关提示词。 测试模型&#xff1a;DreamShaper 8 哥…

STM32CubeMX之freeRTOS互斥量

这是大哥保护小弟的故事 高中低等级的任务 互斥量就是谁要敢插我小弟的队&#xff0c;我就要打他&#xff0c;不能让其他人插我小弟的队 互斥量的使用是默认开启的不用手动开启&#xff01; 最高优先级任务&#xff1a;延时&#xff08;10ms&#xff09;再上厕所 中间&#x…

【网络编程·传输层】UDP和TCP的经典八股文

目录 一、端口号划分 二、部分指令 1、pidof&#xff08;用于查看进程id&#xff09; 2、netstat&#xff08;查看网络状态&#xff09; 三、UDP协议 1、UDP协议格式 2、UDP协议如何进行封装、解包、分用 2.1封装、解包 2.2分用 3、UDP协议的特点 3.1UDP协议的特点 …

【百度翻译api】中文自动翻译为英文

欸&#xff0c;最近想做一些nlp的项目&#xff0c;做完了中文的想做做英文的&#xff0c;但是呢&#xff0c;国内爬虫爬取的肯定都是中文 &#xff0c;爬取外网的技术我没有尝试过&#xff0c;没有把握。所以我决定启用翻译&#xff0c;在这期间chatGPT给了我非常多的方法&…

hive修改表或者删除表时卡死问题的解决(2023-08-08)

背景&#xff1a;前阶段在做hive表的改表名时&#xff0c;总是超时&#xff0c;表是内部表&#xff0c;数据量特别大&#xff0c;无论你是修改表名还是删除表都是卡死的状态&#xff0c;怎么破&#xff1f; 终于&#xff1a;尝试出来一个新的方法 将内部表转化成外部表&#…

24.Netty源码之合理管理堆内存

highlight: arduino-light 合理管理 Netty 堆外内存 内存使用目标 •内存占用少(空间) •应用速度快(时间) 即多快好省 对 Java 而言&#xff1a;减少 Full GC 的 STW(Stop the world)时间 内存使用技巧 • 减少对象本身大小 md 例 1&#xff1a;用基本类型就不要用包装类。 例…

嵌入式虚拟仿真实验教学平台之串口发送数据

嵌入式虚拟仿真实验教学平台课程系列 串口发送数据实验 课程内容 本实验使用 STM32 的串口发送数据。开始仿真后,打开串口监视器&#xff0c;串口监视器会打印出要发送的数据。 课程目标 学习配置使用GPIO功能学习配置使用复用功能学习配置使用UART功能 硬件设计 本课程…

css小练习:案例6.炫彩加载

一.效果浏览图 二.实现思路 html部分 HTML 写了一个加载动画效果&#xff0c;使用了一个包含多个 <span> 元素的 <div> 元素&#xff0c;并为每个 <span> 元素设置了一个自定义属性 --i。 这段代码创建了一个简单的动态加载动画&#xff0c;由20个垂直排列的…

allegro中不可选时,如何对find进行可选操作

allegro出现不可选时&#xff0c;只能尝试其他单一的操作&#xff0c;但这样效率不高&#xff1b;可以通过菜单栏Display下拉菜单点击Element&#xff0c;即可实现FIND下选择需要调整的选项。

selenium爬虫与配置谷歌浏览器的driver问题

用selenium爬虫时&#xff0c;明明已经安装了selenium模块&#xff0c;程序却运行不了。在使用selenium之前必须先配置浏览器对应版本的webdriver 本文主要涉及驱动有问题driver 网上有很多手动的方法&#xff08;查看谷歌浏览的版本然后在其他博主分享的webdriver中下载与自己…

CosmosAI欧盟数字超算新时代战略合作签约仪式在伦敦举行

据英国权威媒体获悉&#xff0c;由分布式超算网络服务商CosmosAI主办的欧盟数字超算新时代战略合作签约仪式将于8月14日英国伦敦历史悠久的莱福士OWO酒店隆重举办&#xff0c;该酒店曾作为爱德华七世国王加冕仪式以及丘吉尔二战办公室享誉盛名。 本次活动CosmosAI基金会联合创…